IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v04y2013i01ns2010007813500012.html
   My bibliography  Save this article

A Rapid Assessment Model For Understanding The Social Cost Of Carbon

Author

Listed:
  • STEPHEN C. NEWBOLD

    (U.S. EPA, National Center for Environmental Economics, EPA West Building — 4316T, 1301 Constitution Avenue NW, Washington, DC 20460, USA)

  • CHARLES GRIFFITHS

    (U.S. EPA, National Center for Environmental Economics, EPA West Building — 4316T, 1301 Constitution Avenue NW, Washington, DC 20460, USA)

  • CHRIS MOORE

    (U.S. EPA, National Center for Environmental Economics, EPA West Building — 4316T, 1301 Constitution Avenue NW, Washington, DC 20460, USA)

  • ANN WOLVERTON

    (U.S. EPA, National Center for Environmental Economics, EPA West Building — 4316T, 1301 Constitution Avenue NW, Washington, DC 20460, USA)

  • ELIZABETH KOPITS

    (U.S. EPA, National Center for Environmental Economics, EPA West Building — 4316T, 1301 Constitution Avenue NW, Washington, DC 20460, USA)

Abstract

The "social cost of carbon" (SCC) is the present value of the stream of future damages from one additional unit of carbon emissions in a particular year. This paper develops a rapid assessment model for the SCC. The model includes the essential ingredients for calculating the SCC at the global scale and is designed to be transparent and easy to use and modify. Our goal is to provide a tool to help analysts and decision-makers quickly explore the implications of various modeling assumptions for the SCC. We use the model to conduct sensitivity analyses over some of the key input parameters, and we compare estimates of the SCC under certainty and uncertainty in a Monte Carlo analysis. We find that, due to the combined effects of uncertainty and risk aversion, the certainty-equivalent SCC can be substantially larger than the expected value of the SCC. In our Monte Carlo simulation, the certainty-equivalent SCC is more than four times larger than the expected value of the SCC, and we show that this result depends crucially on how the uncertain preference parameters are handled. We also compare the approximate present value of benefits estimated using the SCC to the exact value of compensating variation in the initial period for a wide range of hypothetical emission reduction policies.

Suggested Citation

  • Stephen C. Newbold & Charles Griffiths & Chris Moore & Ann Wolverton & Elizabeth Kopits, 2013. "A Rapid Assessment Model For Understanding The Social Cost Of Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-40.
  • Handle: RePEc:wsi:ccexxx:v:04:y:2013:i:01:n:s2010007813500012
    DOI: 10.1142/S2010007813500012
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007813500012
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007813500012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert E. Hall, 2010. "Basic Analysis of Forward-Looking Decision Making," Introductory Chapters, in: Forward-Looking Decision Making: Dynamic Programming Models Applied to Health, Risk, Employment, and Financial Stability, Princeton University Press.
    2. Marten, Alex L., 2011. "Transient temperature response modeling in IAMs: The effects of over simplification on the SCC," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-42.
    3. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    4. Gollier, Christian & Weitzman, Martin L., 2010. "How should the distant future be discounted when discount rates are uncertain?," Economics Letters, Elsevier, vol. 107(3), pages 350-353, June.
    5. Francesco Caselli & James Feyrer, 2007. "The Marginal Product of Capital," The Quarterly Journal of Economics, Oxford University Press, vol. 122(2), pages 535-568.
    6. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    7. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521517324, October.
    8. Karp, Larry & Zhang, Jiangfeng, 2001. "Bayesian Learning and the Regulation of Greenhouse Gas Emissions," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2fr0783c, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Romain Duval & Christine de la Maisonneuve, 2009. "Long-Run GDP Growth Framework and Scenarios for the World Economy," OECD Economics Department Working Papers 663, OECD Publishing.
    10. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    11. Maddison, Angus, 2007. "Contours of the World Economy 1-2030 AD: Essays in Macro-Economic History," OUP Catalogue, Oxford University Press, number 9780199227204, Decembrie.
    12. Dasgupta, Partha, 2001. "Human Well-Being and the Natural Environment," OUP Catalogue, Oxford University Press, number 9780199247882, Decembrie.
    13. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    14. Price, Richard & Thornton, Simeon & Nelson, Stephen, 2007. "The Social Cost of Carbon and the Shadow Price of Carbon: what they are, and how to use them in economic appraisal in the UK," MPRA Paper 74976, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    2. Alex L. Marten, 2014. "The Role Of Scenario Uncertainty In Estimating The Benefits Of Carbon Mitigation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-29.
    3. Siba Sankar Mohanty & Annie Rath, 2021. "Capturing Social Cost in Construction Sector: A Review of Literature through Meta-Analysis," Journal of Studies in Dynamics and Change (JSDC), ISSN: 2348-7038, Voices of Inclusive Change and Expressions- (VOICE) Trust, Dehradun, Uttarakhand, vol. 8(4), pages 17-30, October-D.
    4. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    5. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    6. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    7. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    8. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    2. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    3. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    4. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    5. Hoel, Michael & Karp, Larry, 2002. "Taxes versus quotas for a stock pollutant," Resource and Energy Economics, Elsevier, vol. 24(4), pages 367-384, November.
    6. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    7. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    8. Arvaniti, Maria, 2016. "Uncertainty, Extreme Outcomes and Climate Change: a critique," CERE Working Papers 2016:11, CERE - the Center for Environmental and Resource Economics.
    9. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    10. Joseph E. Aldy & Robert N. Stavins, 2021. "Rolling The Dice In The Corridors Of Power: William Nordhaus’S Impacts On Climate Change Policy," World Scientific Book Chapters, in: Robert Mendelsohn (ed.), CLIMATE CHANGE ECONOMICS Commemoration of Nobel Prize for William Nordhaus, chapter 1, pages 1-18, World Scientific Publishing Co. Pte. Ltd..
    11. Hill, Brian & Michalski, Tomasz, 2018. "Risk versus ambiguity and international security design," Journal of International Economics, Elsevier, vol. 113(C), pages 74-105.
    12. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    13. Riccardo Rebonato & Riccardo Ronzani & Lionel Melin, 2023. "Robust management of climate risk damages," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-43, September.
    14. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    15. Lee H. Endress & James A. Roumasset & Christopher A. Wada, 2020. "Do Natural Disasters Make Sustainable Growth Impossible?," Economics of Disasters and Climate Change, Springer, vol. 4(2), pages 319-345, July.
    16. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    17. Frankel, Jeffrey, 2007. "Formulas for Quantitative Emission Targets," Working Paper Series rwp07-011, Harvard University, John F. Kennedy School of Government.
    18. Kollenberg, Sascha & Taschini, Luca, 2016. "Emissions trading systems with cap adjustments," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 20-36.
    19. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    20. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:04:y:2013:i:01:n:s2010007813500012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.