IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v44y2010i1p53-68.html
   My bibliography  Save this article

Properties and applications of dual reduction

Author

Listed:
  • Yannick Viossat

Abstract

The dual reduction process, introduced by Myerson, allows a finite game to be reduced to a smaller-dimensional game such that any correlated equilibrium of the reduced game is an equilibrium of the original game. We study the properties and applications of this process. It is shown that generic two-player normal form games have a unique full dual reduction (a known refinement of dual reduction) and all strat- egies that have probability zero in all correlated equilibria are eliminated in all full dual reductions. Among other applications, we give a linear programming proof of the fact that a unique correlated equilibrium is a Nash equilibrium, and improve on a result due to Nau, Gomez-Canovas and Hansen on the geometry of Nash equilibria and correlated equilibria.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yannick Viossat, 2010. "Properties and applications of dual reduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 53-68, July.
  • Handle: RePEc:spr:joecth:v:44:y:2010:i:1:p:53-68
    DOI: 10.1007/s00199-009-0477-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-009-0477-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-009-0477-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hofbauer, Josef & Weibull, Jorgen W., 1996. "Evolutionary Selection against Dominated Strategies," Journal of Economic Theory, Elsevier, vol. 71(2), pages 558-573, November.
    2. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    3. repec:dau:papers:123456789/387 is not listed on IDEAS
    4. Myerson, Roger B., 1997. "Dual Reduction and Elementary Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 183-202, October.
    5. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    6. Viossat, Yannick, 2008. "Is having a unique equilibrium robust?," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1152-1160, December.
    7. MERTENS , Jean-François & SORIN , Sylvain & ZAMIR , Shmuel, 1994. "Repeated Games. Part A : Background Material," LIDAM Discussion Papers CORE 1994020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Myerson, R B, 1986. "Acceptable and Predominant Correlated Equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 133-154.
    9. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    10. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
    11. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    12. Viossat, Yannick, 2006. "The Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games," SSE/EFI Working Paper Series in Economics and Finance 641, Stockholm School of Economics.
    13. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    14. Noa Nitzan, 2005. "Tight Correlated Equilibrium," Discussion Paper Series dp394, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    15. Dhillon, Amrita & Mertens, Jean Francois, 1996. "Perfect Correlated Equilibria," Journal of Economic Theory, Elsevier, vol. 68(2), pages 279-302, February.
    16. Robert Nau & Sabrina Gomez Canovas & Pierre Hansen, 2004. "On the geometry of Nash equilibria and correlated equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(4), pages 443-453, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Viossat, 2004. "Replicator Dynamics and Correlated Equilibrium," Working Papers hal-00242953, HAL.
    2. Robert Nau, 2015. "Risk-neutral equilibria of noncooperative games," Theory and Decision, Springer, vol. 78(2), pages 171-188, February.
    3. repec:dau:papers:123456789/5219 is not listed on IDEAS
    4. repec:dau:papers:123456789/882 is not listed on IDEAS
    5. Yohan Pelosse, 2024. "Correlated Equilibrium Strategies with Multiple Independent Randomization Devices," Working Papers 2024-05, Swansea University, School of Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannick Viossat, 2003. "Properties of Dual Reduction," Working Papers hal-00242992, HAL.
    2. repec:dau:papers:123456789/3048 is not listed on IDEAS
    3. Viossat, Yannick, 2008. "Is having a unique equilibrium robust?," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1152-1160, December.
    4. Viossat, Yannick, 2006. "The Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games," SSE/EFI Working Paper Series in Economics and Finance 641, Stockholm School of Economics.
    5. repec:dau:papers:123456789/882 is not listed on IDEAS
    6. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    7. Yannick Viossat, 2003. "Elementary Games and Games Whose Correlated Equilibrium Polytope Has Full Dimension," Working Papers hal-00242991, HAL.
    8. Robert Nau, 2015. "Risk-neutral equilibria of noncooperative games," Theory and Decision, Springer, vol. 78(2), pages 171-188, February.
    9. Yannick Viossat, 2003. "Geometry, Correlated Equilibria and Zero-Sum Games," Working Papers hal-00242993, HAL.
    10. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    11. Myerson, Roger B., 1997. "Dual Reduction and Elementary Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 183-202, October.
    12. Ozdogan, Ayca & Saglam, Ismail, 2021. "Correlated equilibrium under costly disobedience," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 98-104.
    13. Fabrizio Germano & Gábor Lugosi, 2007. "Existence of Sparsely Supported Correlated Equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 575-578, September.
    14. Yannick Viossat, 2004. "Replicator Dynamics and Correlated Equilibrium," Working Papers hal-00242953, HAL.
    15. repec:dau:papers:123456789/5219 is not listed on IDEAS
    16. Jiang, Albert Xin & Leyton-Brown, Kevin, 2015. "Polynomial-time computation of exact correlated equilibrium in compact games," Games and Economic Behavior, Elsevier, vol. 91(C), pages 347-359.
    17. Fook Kong & Berç Rustem, 2013. "Welfare-maximizing correlated equilibria using Kantorovich polynomials with sparsity," Journal of Global Optimization, Springer, vol. 57(1), pages 251-277, September.
    18. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    19. Tommaso Denti & Doron Ravid, 2023. "Robust Predictions in Games with Rational Inattention," Papers 2306.09964, arXiv.org.
    20. Noah Stein & Asuman Ozdaglar & Pablo Parrilo, 2011. "Structure of extreme correlated equilibria: a zero-sum example and its implications," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 749-767, November.
    21. Yohan Pelosse, 2024. "Correlated Equilibrium Strategies with Multiple Independent Randomization Devices," Working Papers 2024-05, Swansea University, School of Management.
    22. Yannick Viossat, 2005. "Openness of the set of games with a unique correlated equilibrium," Working Papers hal-00243016, HAL.
    23. Edward Cartwright & Myrna Wooders, 2008. "Behavioral Properties of Correlated Equilibrium; Social Group Structures with Conformity and Stereotyping," Vanderbilt University Department of Economics Working Papers 0814, Vanderbilt University Department of Economics.

    More about this item

    Keywords

    Correlated equilibrium; Nash equilibrium; Dual reduction; Linear duality; C72;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:44:y:2010:i:1:p:53-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.