IDEAS home Printed from
   My bibliography  Save this paper

Properties and applications of dual reduction


  • Yannick Viossat

    () (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris-Dauphine - CNRS - Centre National de la Recherche Scientifique)


The dual reduction process, introduced by Myerson, allows a finite game to be reduced to a smaller-dimensional game such that any correlated equilibrium of the reduced game is an equilibrium of the original game. We study the properties and applications of this process. It is shown that generic two-player normal form games have a unique full dual reduction (a known refinement of dual reduction) and all strat- egies that have probability zero in all correlated equilibria are eliminated in all full dual reductions. Among other applications, we give a linear programming proof of the fact that a unique correlated equilibrium is a Nash equilibrium, and improve on a result due to Nau, Gomez-Canovas and Hansen on the geometry of Nash equilibria and correlated equilibria.

Suggested Citation

  • Yannick Viossat, 2010. "Properties and applications of dual reduction," Post-Print hal-00264031, HAL.
  • Handle: RePEc:hal:journl:hal-00264031
    DOI: 10.1007/s00199-009-0477-6
    Note: View the original document on HAL open archive server:

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Hofbauer, Josef & Weibull, Jorgen W., 1996. "Evolutionary Selection against Dominated Strategies," Journal of Economic Theory, Elsevier, vol. 71(2), pages 558-573, November.
    2. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759 Elsevier.
    3. repec:dau:papers:123456789/387 is not listed on IDEAS
    4. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    5. MERTENS , Jean-François & SORIN , Sylvain & ZAMIR , Shmuel, 1994. "Repeated Games. Part A : Background Material," CORE Discussion Papers 1994020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
    7. Viossat, Yannick, 2006. "The Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games," SSE/EFI Working Paper Series in Economics and Finance 641, Stockholm School of Economics.
    8. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    9. Dhillon, Amrita & Mertens, Jean Francois, 1996. "Perfect Correlated Equilibria," Journal of Economic Theory, Elsevier, vol. 68(2), pages 279-302, February.
    10. Robert Nau & Sabrina Gomez Canovas & Pierre Hansen, 2004. "On the geometry of Nash equilibria and correlated equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(4), pages 443-453, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yannick Viossat, 2004. "Replicator Dynamics and Correlated Equilibrium," Working Papers hal-00242953, HAL.
    2. Robert Nau, 2015. "Risk-neutral equilibria of noncooperative games," Theory and Decision, Springer, vol. 78(2), pages 171-188, February.
    3. repec:dau:papers:123456789/5219 is not listed on IDEAS
    4. repec:dau:papers:123456789/882 is not listed on IDEAS

    More about this item


    correlated equilibrium; Nash equilibrium; dual reduction; équilibre corrélé; équilibre de Nash; réduction duale;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00264031. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.