IDEAS home Printed from
   My bibliography  Save this paper

Existence of sparsely supported correlated equilibria



We show that every finite N-player normal form game possesses a correlated equilibrium with a precise lower bound on the number of outcomes to which it assigns zero probability. In particular, the largest games with a unique fully supported correlated equilibrium are two-player games; moreover, the lower bound grows exponentially in the number of players N.

Suggested Citation

  • Fabrizio Germano & Gábor Lugosi, 2005. "Existence of sparsely supported correlated equilibria," Economics Working Papers 907, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2006.
  • Handle: RePEc:upf:upfgen:907

    Download full text from publisher

    File URL:
    File Function: Whole Paper
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    2. Noa Nitzan, 2005. "Tight Correlated Equilibrium," Discussion Paper Series dp394, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Noah Stein & Asuman Ozdaglar & Pablo Parrilo, 2011. "Structure of extreme correlated equilibria: a zero-sum example and its implications," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 749-767, November.
    2. Jiang, Albert Xin & Leyton-Brown, Kevin, 2015. "Polynomial-time computation of exact correlated equilibrium in compact games," Games and Economic Behavior, Elsevier, vol. 91(C), pages 347-359.
    3. Stein, Noah D. & Parrilo, Pablo A. & Ozdaglar, Asuman, 2011. "Correlated equilibria in continuous games: Characterization and computation," Games and Economic Behavior, Elsevier, vol. 71(2), pages 436-455, March.

    More about this item


    Correlated equilibrium; finite games;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:907. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.