IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Elementary Games and Games Whose Correlated Equilibrium Polytope Has Full Dimension

  • Yannick Viossat

    (CECO - Laboratoire d'econometrie de l'école polytechnique - CNRS - Polytechnique - X)

A game is elementary if it has strict correlated equilibrium distributions with full support. A game is full if its correlated equilibrium polytope has full dimension. Any elementary game is full. We show that a full game is elementary if and only if all the correlated equilibrium incentive constraints are nonvacuous. Characterizations of full games are provided and examples are given. Finally, we give a method to build full, nonelementary games.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by HAL in its series Working Papers with number hal-00242991.

in new window

Date of creation: 2003
Date of revision:
Handle: RePEc:hal:wpaper:hal-00242991
Note: View the original document on HAL open archive server:
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Roger B. Myerson, 1995. "Dual Reduction and Elementary Games," Discussion Papers 1133, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  2. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
  3. AUMANN, Robert J., . "Subjectivity and correlation in randomized strategies," CORE Discussion Papers RP 167, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Viossat, Yannick, 2003. "Properties of Dual Reduction," Economics Papers from University Paris Dauphine 123456789/3048, Paris Dauphine University.
  5. Robert W. Rosenthal, 1973. "Correlated Equilibria in Some Classes of Two-Person Games," Discussion Papers 45, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242991. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.