IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i3p821-843.html
   My bibliography  Save this article

Recurrent support vector regression for a non-linear ARMA model with applications to forecasting financial returns

Author

Listed:
  • Shiyi Chen
  • Kiho Jeong
  • Wolfgang Härdle

Abstract

Motivated by recurrent neural networks, this paper proposes a recurrent support vector regression (SVR) procedure to forecast nonlinear ARMA model based simulated data and real data of financial returns. The forecasting ability of the recurrent SVR based ARMA model is compared with five competing models (random walk, threshold ARMA model, MLE based ARMA model, recurrent artificial neural network based ARMA model and feed-forward SVR based ARMA model) by using two forecasting accuracy evaluation metrics (NSME and sign) and robust Diebold–Mariano test. The results reveal that for one-step-ahead forecasting, the recurrent SVR model is consistently better than the benchmark models in forecasting both the magnitude and turning points, and statistically improves the forecasting performance as opposed to the usual feed-forward SVR. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Shiyi Chen & Kiho Jeong & Wolfgang Härdle, 2015. "Recurrent support vector regression for a non-linear ARMA model with applications to forecasting financial returns," Computational Statistics, Springer, vol. 30(3), pages 821-843, September.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:3:p:821-843
    DOI: 10.1007/s00180-014-0543-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0543-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0543-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hum:wpaper:sfb649dp2005-009 is not listed on IDEAS
    2. Lisi, Francesco & Schiavo, Rosa A., 1999. "A comparison between neural networks and chaotic models for exchange rate prediction," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 87-102, March.
    3. Angelos Kanas, 2003. "Non-linear forecasts of stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 299-315.
    4. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    5. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    6. Tian, Jilei & Juhola, Martti & Gronfors, Tapio, 1997. "AR parameter estimation by a feedback neural network," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 17-24, July.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Evgeniou, Theodoros & Poggio, Tomaso & Pontil, Massimiliano & Verri, Alessandro, 2002. "Regularization and statistical learning theory for data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 421-432, February.
    11. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    12. Wu, Berlin, 1995. "Model-free forecasting for nonlinear time series (with application to exchange rates)," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 433-459, April.
    13. repec:hum:wpaper:sfb649dp2006-015 is not listed on IDEAS
    14. Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
    15. Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2005. "Predicting bankruptcy with support vector machines," SFB 649 Discussion Papers 2005-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2006. "Graphical data representation in bankruptcy analysis," SFB 649 Discussion Papers 2006-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    2. Shuyu Li & Xue Yang & Rongrong Li, 2018. "Forecasting China’s Coal Power Installed Capacity: A Comparison of MGM, ARIMA, GM-ARIMA, and NMGM Models," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    3. Ostap Okhrin & Stefan Trück, 2015. "Editorial to the special issue on Applicable semiparametrics of computational statistics," Computational Statistics, Springer, vol. 30(3), pages 641-646, September.
    4. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2008-051 is not listed on IDEAS
    3. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    4. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    6. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Francq, Christian & Zakoïan, Jean-Michel, 2020. "Virtual Historical Simulation for estimating the conditional VaR of large portfolios," Journal of Econometrics, Elsevier, vol. 217(2), pages 356-380.
    8. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    9. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    10. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    11. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    12. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    13. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    14. Luke Hartigan, 2016. "Testing for Symmetry in Weakly Dependent Time Series," Discussion Papers 2016-18, School of Economics, The University of New South Wales.
    15. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    16. Reitz, Stefan & Ruelke, Jan & Stadtmann, Georg, 2009. "Are oil-price-forecasters finally right? -- Regressive expectations towards more fundamental values of the oil price," MPRA Paper 15607, University Library of Munich, Germany.
    17. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    19. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    20. Takaaki Koike & Cathy W. S. Chen & Edward M. H. Lin, 2024. "Forecasting and Backtesting Gradient Allocations of Expected Shortfall," Papers 2401.11701, arXiv.org, revised Jun 2024.
    21. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.

    More about this item

    Keywords

    Recurrent support vector regression; Non-linear ARMA ; Financial forecasting; C45; C53; F37; F47; G17;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:3:p:821-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.