IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v44y2004i4p547-570.html
   My bibliography  Save this article

Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data

Author

Listed:
  • Gaudart, Jean
  • Giusiano, Bernard
  • Huiart, Laetitia

Abstract

No abstract is available for this item.

Suggested Citation

  • Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
  • Handle: RePEc:eee:csdana:v:44:y:2004:i:4:p:547-570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00257-8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Anny & Lapuerta, Pablo & Ryutov, Alex & Buckley, Jonathan & Azen, Stanley, 2000. "Comparison of the performance of neural network methods and Cox regression for censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 243-257, August.
    2. Vach, Werner & Ro[ss]ner, Reinhard & Schumacher, Martin, 1996. "Neural networks and logistic regression: Part II," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 683-701, June.
    3. Lisi, Francesco & Schiavo, Rosa A., 1999. "A comparison between neural networks and chaotic models for exchange rate prediction," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 87-102, March.
    4. Capobianco, Enrico, 2000. "Neural networks and statistical inference: seeking robust and efficient learning," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 443-454, January.
    5. Tian, Jilei & Juhola, Martti & Gronfors, Tapio, 1997. "AR parameter estimation by a feedback neural network," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 17-24, July.
    6. Nicole, Sandro, 2000. "Feedforward neural networks for principal components extraction," Computational Statistics & Data Analysis, Elsevier, vol. 33(4), pages 425-437, June.
    7. Schumacher, Martin & Ro[ss]ner, Reinhard & Vach, Werner, 1996. "Neural networks and logistic regression: Part I," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 661-682, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Kooij, Anita J. & Meulman, Jacqueline J. & Heiser, Willem J., 2006. "Local minima in categorical multiple regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 446-462, January.
    2. Shiyi Chen & Kiho Jeong & Wolfgang Härdle, 2015. "Recurrent support vector regression for a non-linear ARMA model with applications to forecasting financial returns," Computational Statistics, Springer, vol. 30(3), pages 821-843, September.
    3. Walde, Janette F., 2007. "Valid hypothesis testing in face of spatially dependent data using multi-layer perceptrons and sub-sampling techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2701-2719, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:44:y:2004:i:4:p:547-570. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.