IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v28y2007i1p25-52.html
   My bibliography  Save this article

Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect

Author

Listed:
  • Kenneth A. Small
  • Kurt Van Dender

Abstract

We estimate the rebound effect for motor vehicles, by which improved fuel efficiency causes additional travel, using a pooled cross section of US states for 1966-2001. Our model accounts for endogenous changes in fuel efficiency, distinguishes between autocorrelation and lagged effects, includes a measure of the stringency of fuel-economy standards, and allows the rebound effect to vary with income, urbanization, and the fuel cost of driving. At sample averages of variables, our simultaneous-equations estimates of the short- and long-run rebound effect are 4.5% and 22.2%. But rising real income caused it to diminish substantially over the period, aided by falling fuel prices. With variables at 1997-2001 levels, our estimates are only 2.2% and 10.7%, considerably smaller than values typically assumed for policy analysis. With income and starting fuel efficiency at 1997-2001 levels and fuel prices 58 percent higher, the estimates are still only 3.1% and 15.3%, respectively.

Suggested Citation

  • Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, , vol. 28(1), pages 25-52, January.
  • Handle: RePEc:sae:enejou:v:28:y:2007:i:1:p:25-52
    DOI: 10.5547/ISSN0195-6574-EJ-Vol28-No1-2
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol28-No1-2
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol28-No1-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    2. Clifton T Jones, 1993. "Another Look at U.S. Passenger Vehicle Use and the 'Rebound' Effect from Improved Fuel Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 99-110.
    3. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    4. Gerard de Jong & Hugh Gunn, 2001. "Recent Evidence on Car Cost and Time Elasticities of Travel Demand in Europe," Journal of Transport Economics and Policy, University of Bath, vol. 35(2), pages 137-160, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mamkhezri, Jamal & Khezri, Mohsen, 2024. "Vehicle miles traveled induced demand, rebound effect, and price and income elasticities: A US spatial econometric analysis," Transport Policy, Elsevier, vol. 158(C), pages 224-240.
    2. Tufan Özsoy, 2024. "The “energy rebound effect” within the framework of environmental sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    3. Shi, Hui & Goulias, Konstadinos G., 2024. "Understanding the zero-emission vehicle market spatial diffusion and its determinants from 2019 to 2022 using spatial econometric models," Energy, Elsevier, vol. 313(C).
    4. Huntington, Hillard G., 2024. "US gasoline response to vehicle fuel efficiency: A contribution to the direct rebound effect," Energy Economics, Elsevier, vol. 136(C).
    5. Klemick, Heather & Kopits. Elizabeth & Wolverton, Ann, 2019. "Consumer Valuation of Fuel Economy: Findings from Recent Panel Studies," National Center for Environmental Economics-NCEE Working Papers 283626, United States Environmental Protection Agency (EPA).
    6. Fidel Gonzalez & Diya Mazumder, 2025. "Do Declining Vehicle Attributes Eliminate the Direct Rebound Effect?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 51(2), pages 198-224, April.
    7. Sheldon, Tamara L. & Dua, Rubal, 2024. "The dynamic role of subsidies in promoting global electric vehicle sales," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    8. repec:osf:socarx:qvwpg_v1 is not listed on IDEAS
    9. Fleance George Cocker, 2025. "Mixes of Policy Instruments for the Full Decarbonisation of Energy Systems: A Review," Energies, MDPI, vol. 18(1), pages 1-64, January.
    10. Belloc, Ignacio & Gimenez-Nadal, José Ignacio & Molina, José Alberto, 2024. "The gasoline price and the commuting behavior of US commuters: Exploring changes to green travel mode choices," Journal of Transport Geography, Elsevier, vol. 121(C).
    11. Nehiba, Cody, 2024. "Timing Matters: Estimating within-day variation in the rebound effect," National Center for Environmental Economics-NCEE Working Papers 348907, United States Environmental Protection Agency (EPA).
    12. Nehiba, Cody, 2024. "Electric vehicle usage, pollution damages, and the electricity price elasticity of driving," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    2. Zolnik, Edmund J., 2012. "Estimates of statewide and nationwide carbon dioxide emission reductions and their costs from Cash for Clunkers," Journal of Transport Geography, Elsevier, vol. 24(C), pages 271-281.
    3. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    4. Sriananthakumar, Sivagowry, 2013. "Testing linear regression model with AR(1) errors against a first-order dynamic linear regression model with white noise errors: A point optimal testing approach," Economic Modelling, Elsevier, vol. 33(C), pages 126-136.
    5. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    6. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, , vol. 20(3), pages 1-31, July.
    7. Choo, Sangho, 2003. "Aggregate Relationships between Telecommunications and Travel: Structural Equation Modeling of Time Series Data," University of California Transportation Center, Working Papers qt4p78h623, University of California Transportation Center.
    8. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    9. Wohlgemuth, Norbert, 1997. "World transport energy demand modelling : Methodology and elasticities," Energy Policy, Elsevier, vol. 25(14-15), pages 1109-1119, December.
    10. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    11. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    12. Galvin, Ray & Martulli, Alessandro & Ruzzenenti, Franco, 2021. "Does power curb energy efficiency? Evidence from two decades of European truck tests," Energy, Elsevier, vol. 232(C).
    13. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    14. Shrestha, Ram M. & Shrestha, Rabin, 2004. "Economics of clean development mechanism power projects under alternative approaches for setting baseline emissions," Energy Policy, Elsevier, vol. 32(12), pages 1363-1374, August.
    15. Sikka, Nikhil & Sun, Jielin, 2009. "An investigation of the impacts of economic conditions on vehicle miles traveled: a vector error-correction approach," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207734, Transportation Research Forum.
    16. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    17. Meyer, I. & Wessely, S., 2009. "Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions," Energy Policy, Elsevier, vol. 37(10), pages 3779-3789, October.
    18. Grepperud, Sverre & Rasmussen, Ingeborg, 2004. "A general equilibrium assessment of rebound effects," Energy Economics, Elsevier, vol. 26(2), pages 261-282, March.
    19. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    20. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:28:y:2007:i:1:p:25-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.