IDEAS home Printed from https://ideas.repec.org/a/eee/ecotra/v41y2025ics2212012225000024.html
   My bibliography  Save this article

Distributional effects of a vehicle miles traveled tax over the different vehicle efficiency

Author

Listed:
  • Cheon, Jiyeon

Abstract

This paper examines the distributional effects of a Vehicle Miles Traveled (VMT) tax, focusing on the increasing adoption of electric vehicles (EVs) in the United States. Using a two-period model that integrates decisions on vehicle selection and subsequent driving behavior, the study evaluates short-term changes in consumer surplus resulting from replacing a gasoline tax with a VMT tax. The results suggest that a revenue-neutral VMT tax could modestly increase consumer surplus by approximately $2 per vehicle annually. The analysis also reveals that a uniform federal VMT tax rate leads to varying outcomes across states. Furthermore, the findings demonstrate that the policy’s efficiency improves with higher EV adoption rates. Specifically, when EVs account for 5% of the market share, the additional consumer surplus generated by EV adoption is twice the surplus achieved through a revenue-neutral VMT tax.

Suggested Citation

  • Cheon, Jiyeon, 2025. "Distributional effects of a vehicle miles traveled tax over the different vehicle efficiency," Economics of Transportation, Elsevier, vol. 41(C).
  • Handle: RePEc:eee:ecotra:v:41:y:2025:i:c:s2212012225000024
    DOI: 10.1016/j.ecotra.2025.100394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212012225000024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecotra.2025.100394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marion, Justin & Muehlegger, Erich, 2011. "Fuel tax incidence and supply conditions," Journal of Public Economics, Elsevier, vol. 95(9), pages 1202-1212.
    2. Starr McMullen, B. & Zhang, Lei & Nakahara, Kyle, 2010. "Distributional impacts of changing from a gasoline tax to a vehicle-mile tax for light vehicles: A case study of Oregon," Transport Policy, Elsevier, vol. 17(6), pages 359-366, November.
    3. Mark R. Jacobsen, 2013. "Evaluating US Fuel Economy Standards in a Model with Producer and Household Heterogeneity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(2), pages 148-187, May.
    4. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    6. Anderson, Soren T. & Kellogg, Ryan & Sallee, James M., 2013. "What do consumers believe about future gasoline prices?," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 383-403.
    7. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    8. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    9. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    10. Gilbert E. Metcalf, 2023. "The Distributional Impacts of a VMT-Gas Tax Swap," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 4(1), pages 4-42.
    11. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, , vol. 37(2), pages 257-288, April.
    12. Pinelopi Koujianou Goldberg, 1998. "The Effects of the Corporate Average Fuel Efficiency Standards in the US," Journal of Industrial Economics, Wiley Blackwell, vol. 46(1), pages 1-33, March.
    13. Goetzke, Frank & Vance, Colin, 2021. "An increasing gasoline price elasticity in the United States?," Energy Economics, Elsevier, vol. 95(C).
    14. Antonio M. Bento & Lawrence H. Goulder & Mark R. Jacobsen & Roger H. von Haefen, 2009. "Distributional and Efficiency Impacts of Increased US Gasoline Taxes," American Economic Review, American Economic Association, vol. 99(3), pages 667-699, June.
    15. Shanjun Li & Christopher Timmins & Roger H. von Haefen, 2009. "How Do Gasoline Prices Affect Fleet Fuel Economy?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(2), pages 113-137, August.
    16. Langer, Ashley & Maheshri, Vikram & Winston, Clifford, 2017. "From gallons to miles: A disaggregate analysis of automobile travel and externality taxes," Journal of Public Economics, Elsevier, vol. 152(C), pages 34-46.
    17. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, , vol. 28(1), pages 25-52, January.
    18. Ye Feng & Don Fullerton & Li Gan, 2013. "Vehicle choices, miles driven, and pollution policies," Journal of Regulatory Economics, Springer, vol. 44(1), pages 4-29, August.
    19. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    20. Leard, Benjamin & Li, Shanjun & Xing, Jianwei, 2019. "What Does an Electric Vehicle Replace?," RFF Working Paper Series 19-05, Resources for the Future.
    21. Duncan, Denvil & Nadella, Venkata & Giroux, Stacey & Bowers, Ashley & Graham, John D., 2017. "The road mileage user-fee: Level, intensity, and predictors of public support," Transport Policy, Elsevier, vol. 53(C), pages 70-78.
    22. Jianwei Xing & Benjamin Leard & Shanjun Li, 2019. "What Does an Electric Vehicle Replace?," NBER Working Papers 25771, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    2. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Mamkhezri, Jamal & Khezri, Mohsen, 2024. "Vehicle miles traveled induced demand, rebound effect, and price and income elasticities: A US spatial econometric analysis," Transport Policy, Elsevier, vol. 158(C), pages 224-240.
    4. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    5. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Substitution between cars within the household," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 135-156.
    6. Konishi, Yoshifumi & Kuroda, Sho, 2023. "Why is Japan’s carbon emissions from road transportation declining?," Japan and the World Economy, Elsevier, vol. 66(C).
    7. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    8. Fidel Gonzalez & Diya Mazumder, 2025. "Do Declining Vehicle Attributes Eliminate the Direct Rebound Effect?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 51(2), pages 198-224, April.
    9. Bansal, Prateek & Dua, Rubal, 2022. "Fuel consumption elasticities, rebound effect and feebate effectiveness in the Indian and Chinese new car markets," Energy Economics, Elsevier, vol. 113(C).
    10. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.
    11. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    12. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    13. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    14. Liu, Yizao, 2010. "Gasoline Prices, Fuel Economy Efficiency And Automobile Replacement Dynamics," Working Paper series 148290, University of Connecticut, Charles J. Zwick Center for Food and Resource Policy.
    15. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    16. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    17. Chugh, Randy & Cropper, Maureen, 2017. "The welfare effects of fuel conservation policies in a dual-fuel car market: Evidence from India," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 244-261.
    18. Nehiba, Cody, 2024. "Timing Matters: Estimating within-day variation in the rebound effect," National Center for Environmental Economics-NCEE Working Papers 348907, United States Environmental Protection Agency (EPA).
    19. Spiller, Elisheba & Stephens, Heather M. & Chen, Yong, 2017. "Understanding the heterogeneous effects of gasoline taxes across income and location," Resource and Energy Economics, Elsevier, vol. 50(C), pages 74-90.
    20. Knittel, Christopher R. & Tanaka, Shinsuke, 2021. "Fuel economy and the price of gasoline: Evidence from fueling-level micro data," Journal of Public Economics, Elsevier, vol. 202(C).

    More about this item

    Keywords

    VMT tax; Gas tax; EVs;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecotra:v:41:y:2025:i:c:s2212012225000024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecotra .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.