IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0340.html
   My bibliography  Save this article

Bayesian identification of structural vector autoregression models

Author

Listed:
  • Arefiev, Nikolay

    () (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

  • Khabibullin, Ramis

    () (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

Abstract

We propose a new method of Bayesian identification of a structural vector autoregression based on the Bayesian model averaging. As compared to the literature on Bayesian SVAR averaging, the proposed algorithm can identify not only recursive, but also cyclical models given that some conditions specified in the paper hold. Bayesian model selection is made within the set of distinguishable on data models. We use simulations to assess the performance of the algorithm. We also check sensitivity of the proposed algorithm with respect to true parameter values, number of observations, and with respect to the parameters of prior distribution.

Suggested Citation

  • Arefiev, Nikolay & Khabibullin, Ramis, 2018. "Bayesian identification of structural vector autoregression models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 49, pages 115-142.
  • Handle: RePEc:ris:apltrx:0340
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2018_49_115-142.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    2. Alessio Moneta, 2008. "Graphical causal models and VARs: an empirical assessment of the real business cycles hypothesis," Empirical Economics, Springer, vol. 35(2), pages 275-300, September.
    3. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    4. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    5. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    6. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    7. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    8. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    9. Matteo Fragetta & Giovanni Melina, 2013. "Identification of monetary policy in SVAR models: a data-oriented perspective," Empirical Economics, Springer, vol. 45(2), pages 831-844, October.
    10. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    11. Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
    12. Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
    13. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    14. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    15. Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(1), pages 152-179, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    2. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    3. Waggoner, Daniel F. & Wu, Hongwei & Zha, Tao, 2016. "Striated Metropolis–Hastings sampler for high-dimensional models," Journal of Econometrics, Elsevier, vol. 192(2), pages 406-420.
    4. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    6. Neusser, Klaus, 2016. "A topological view on the identification of structural vector autoregressions," Economics Letters, Elsevier, vol. 144(C), pages 107-111.
    7. Fabian Fink & Yves S. Schüler, 2013. "The Transmission of US Financial Stress: Evidence for Emerging Market Economies," Working Paper Series of the Department of Economics, University of Konstanz 2013-01, Department of Economics, University of Konstanz.
    8. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    11. Christopher A. Sims & Tao Zha, 2004. "MCMC method for Markov mixture simultaneous-equation models: a note," FRB Atlanta Working Paper 2004-15, Federal Reserve Bank of Atlanta.
    12. Yin, Libo & Ma, Xiyuan, 2018. "Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 434-453.
    13. Nikolay Arefiev, 2016. "Graphical Interpretations of Rank Conditions For Identification of Linear Gaussian Models," HSE Working papers WP BRP 124/EC/2016, National Research University Higher School of Economics.
    14. Martin Feldkircher & Florian Huber, 2018. "Unconventional U.S. Monetary Policy: New Tools, Same Channels?," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(4), pages 1-31, October.
    15. Jonas E. Arias & Juan Rubio-Ramirez & Daniel F. Waggoner, 2013. "Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications," Working Papers 2013-24, FEDEA.
    16. Fabio Canova & Fernando J. Pérez Forero, 2012. "Estimating overidentified, nonrecursive, time-varying coefficients structural VARs," Economics Working Papers 1321, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Kilian, Lutz, 2019. "Facts and Fiction in Oil Market Modeling," CEPR Discussion Papers 14047, C.E.P.R. Discussion Papers.
    18. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    19. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    20. Mark Bognanni & Edward Herbst, 2014. "Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach," Working Papers (Old Series) 1427, Federal Reserve Bank of Cleveland.

    More about this item

    Keywords

    SVAR; identification; Bayesian model averaging; Bayesian model selection;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.