IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0340.html
   My bibliography  Save this article

Bayesian identification of structural vector autoregression models

Author

Listed:
  • Arefiev, Nikolay

    () (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

  • Khabibullin, Ramis

    () (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

Abstract

We propose a new method of Bayesian identification of a structural vector autoregression based on the Bayesian model averaging. As compared to the literature on Bayesian SVAR averaging, the proposed algorithm can identify not only recursive, but also cyclical models given that some conditions specified in the paper hold. Bayesian model selection is made within the set of distinguishable on data models. We use simulations to assess the performance of the algorithm. We also check sensitivity of the proposed algorithm with respect to true parameter values, number of observations, and with respect to the parameters of prior distribution.

Suggested Citation

  • Arefiev, Nikolay & Khabibullin, Ramis, 2018. "Bayesian identification of structural vector autoregression models," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 49, pages 115-142.
  • Handle: RePEc:ris:apltrx:0340
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    2. Alessio Moneta, 2008. "Graphical causal models and VARs: an empirical assessment of the real business cycles hypothesis," Empirical Economics, Springer, vol. 35(2), pages 275-300, September.
    3. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    4. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    5. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    6. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    7. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    8. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    9. Matteo Fragetta & Giovanni Melina, 2013. "Identification of monetary policy in SVAR models: a data-oriented perspective," Empirical Economics, Springer, vol. 45(2), pages 831-844, October.
    10. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    11. Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
    12. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    13. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    14. Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(01), pages 152-179, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    SVAR; identification; Bayesian model averaging; Bayesian model selection;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.