Author
Listed:
- Mohamad Ali Khalil
(The University of British Columbia (UBC))
- Mahmudur Rahman Fatmi
(The University of British Columbia (UBC))
- Muntahith Orvin
(The University of British Columbia (UBC))
Abstract
Studies have shown that sociodemographic attributes significantly influence individuals' transportation choices. However, not all travel demand models do not account for this effect when predicting future travel scenarios. On the other hand, current integrated urban models (IUMs) that incorporate demographic dynamics mostly rely on conventional logit models and rule-based models. These models may not be optimal for complex modeling since they do not fully capture the non-linear relationship between inputs and output. In this research, we explore the feasibility of utilizing machine learning (ML) models to enhance the prediction of demographic dynamics within our proposed IUM—known as ‘STELARS’, in conjunction with conventional logit models. To address the challenge of the black-box nature of ML, we employ an explainable AI technique (xAI) to gain insights into the influence of the factors and compare them with the interpretation revealed by the logit models. Three demographic components are considered: marriage/common-law formation, separation and divorce, and childbirth events, while other components were developed using rate-based models. The results (on the testing dataset) indicate that ML models outperform conventional logit models in terms of overall accuracy by a margin of up-to 3%. However, when considering the true positive accuracy (correctly predicting the event of interest), a significant improvement of 30–48% is observed. Additionally, the xAI analysis reveals consistent interpretation with the logit model. Subsequently, we implemented our demographic dynamics module within our integrated urban modeling system to predict population changes in the Okanagan region of Canada. The multi-year validation of the simulation results against Census data suggests a reasonably close prediction of the observed population. We also optimize the runtime of the demographic dynamics module using vectorization, reducing the simulation time for the demographic changes in our study area (comprising approximately 200,000 individuals living in 85,000 households) to just about 100 s for the total 10 years of simulation. The development and implementation of this advanced demographic dynamics module to accurately predict the life events of individuals adds a fundamental capacity to the STELARS to be built as an event-based microsimulation model.
Suggested Citation
Mohamad Ali Khalil & Mahmudur Rahman Fatmi & Muntahith Orvin, 2025.
"Developing and microsimulating demographic dynamics for an integrated urban model: a comparison between logistic regression and machine learning techniques,"
Transportation, Springer, vol. 52(4), pages 1621-1655, August.
Handle:
RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-024-10468-7
DOI: 10.1007/s11116-024-10468-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-024-10468-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.