IDEAS home Printed from
   My bibliography  Save this article

Spatial Models in Marketing


  • Eric Bradlow
  • Bart Bronnenberg
  • Gary Russell
  • Neeraj Arora
  • David Bell
  • Sri Duvvuri
  • Frankel Hofstede
  • Catarina Sismeiro
  • Raphael Thomadsen
  • Sha Yang


Marketing science models typically assume that responses of one entity (firm or consumer) are unrelated to responses of other entities. In contrast, models constructed using tools from spatial statistics allow for cross-sectional and longitudinal correlations among responses to be explicitly modeled by locating entities on some type of map. By generalizing the notion of a map to include demographic and psychometric representations, spatial models can capture a variety of effects (spatial lags, spatial autocorrelation, and spatial drift) that impact firm or consumer decision behavior. Marketing science applications of spatial models and important research opportunities are discussed. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Eric Bradlow & Bart Bronnenberg & Gary Russell & Neeraj Arora & David Bell & Sri Duvvuri & Frankel Hofstede & Catarina Sismeiro & Raphael Thomadsen & Sha Yang, 2005. "Spatial Models in Marketing," Marketing Letters, Springer, vol. 16(3), pages 267-278, December.
  • Handle: RePEc:kap:mktlet:v:16:y:2005:i:3:p:267-278
    DOI: 10.1007/s11002-005-5891-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Michel Wedel & Rik Pieters, 2000. "Eye Fixations on Advertisements and Memory for Brands: A Model and Findings," Marketing Science, INFORMS, vol. 19(4), pages 297-312, October.
    2. Frenkel Ter Hofstede & Michel Wedel & Jan-Benedict E.M. Steenkamp, 2002. "Identifying Spatial Segments in International Markets," Marketing Science, INFORMS, vol. 21(2), pages 160-177, July.
    3. Marshall P. & Bradlow E.T., 2002. "A Unified Approach to Conjoint Analysis Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 674-682, September.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    5. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    6. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    7. Bart J. Bronnenberg & Vijay Mahajan, 2001. "Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotion Variables," Marketing Science, INFORMS, vol. 20(3), pages 284-299, October.
    8. Simon P. Anderson & André De Palma, 1988. "Spatial Price Discrimination with Heterogeneous Products," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(4), pages 573-592.
    9. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Liu, Zhuping & Duan, Jason A & Mahajan, Vijay, 2020. "Dynamics and peer effects of brand revenue in college sports," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 756-771.
    2. P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
    3. Josep‐Maria Arauzo‐Carod & Daniel Liviano‐Solis & Miguel Manjón‐Antolín, 2010. "Empirical Studies In Industrial Location: An Assessment Of Their Methods And Results," Journal of Regional Science, Wiley Blackwell, vol. 50(3), pages 685-711, August.
    4. Trivedi, Minakshi, 2011. "Regional and Categorical Patterns in Consumer Behavior: Revealing Trends," Journal of Retailing, Elsevier, vol. 87(1), pages 18-30.
    5. Hernández-Mireles, C., 2010. "Finding the Influentials that Drive the Diffusion of New Technologies," ERIM Report Series Research in Management ERS-2010-023-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    7. P. Baecke & D. Van Den Poel, 2012. "Improving Customer Acquisition Models by Incorporating Spatial Autocorrelation at Different Levels of Granularity," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/819, Ghent University, Faculty of Economics and Business Administration.
    8. C. Marinelli & S. Savin, 2008. "Optimal Distributed Dynamic Advertising," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 569-591, June.
    9. V Kumar & Amalesh Sharma & Shaphali Gupta, 2017. "Accessing the influence of strategic marketing research on generating impact: moderating roles of models, journals, and estimation approaches," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 164-185, March.
    10. Vincent Nijs & Kanishka Misra & Eric T. Anderson & Karsten Hansen & Lakshman Krishnamurthi, 2010. "Channel Pass-Through of Trade Promotions," Marketing Science, INFORMS, vol. 29(2), pages 250-267, 03-04.
    11. Benjamin Verhelst & Dirk Van den Poel, 2014. "Deep habits in consumption: a spatial panel analysis using scanner data," Empirical Economics, Springer, vol. 47(3), pages 959-976, November.
    12. Erik Brynjolfsson & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2009. "Battle of the Retail Channels: How Product Selection and Geography Drive Cross-Channel Competition," Management Science, INFORMS, vol. 55(11), pages 1755-1765, November.
    13. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    14. Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
    15. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
    16. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
    17. Akira Matsui & Daisuke Moriwaki, 2022. "Online-to-offline advertisements as field experiments," The Japanese Economic Review, Springer, vol. 73(1), pages 211-242, January.
    18. Margaret Aksoy-Pierson & Gad Allon & Awi Federgruen, 2013. "Price Competition Under Mixed Multinomial Logit Demand Functions," Management Science, INFORMS, vol. 59(8), pages 1817-1835, August.
    19. Kim, Sunghoon & DeSarbo, Wayne S. & Chang, Won, 2021. "Note: A new approach to the modeling of spatially dependent and heterogeneous geographical regions," International Journal of Research in Marketing, Elsevier, vol. 38(3), pages 792-803.
    20. Müller, Sven & Wilhelm, Pascal & Haase, Knut, 2013. "Spatial dependencies and spatial drift in public transport seasonal ticket revenue data," Journal of Retailing and Consumer Services, Elsevier, vol. 20(3), pages 334-348.
    21. Moon, Sangkil & Azizi, Kathryn, 2013. "Finding Donors by Relationship Fundraising," Journal of Interactive Marketing, Elsevier, vol. 27(2), pages 112-129.
    22. Moon, Sangkil & Jalali, Nima & Song, Reo, 2022. "Green-lighting scripts in the movie pre-production stage: An application of consumption experience carryover theory," Journal of Business Research, Elsevier, vol. 140(C), pages 332-345.
    23. Duncan A. Robertson, 2019. "Spatial Transmission Models: A Taxonomy and Framework," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 225-243, January.
    24. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bart J. Bronnenberg & Carl F. Mela, 2004. "Market Roll-Out and Retailer Adoption for New Brands," Marketing Science, INFORMS, vol. 23(4), pages 500-518, September.
    2. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    3. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    4. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    5. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    6. P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
    7. Nicholas Economides & Przemyslaw Jeziorski, 2017. "Mobile Money in Tanzania," Marketing Science, INFORMS, vol. 36(6), pages 815-837, November.
    8. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    9. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    10. Ke-Wei Huang, 2009. "Optimal criteria for selecting price discrimination metrics when buyers have log-normally distributed willingness-to-pay," Quantitative Marketing and Economics (QME), Springer, vol. 7(3), pages 321-341, September.
    11. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    12. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    13. Woo, JongRoul & Shin, Jungwoo & Kim, Hongbum & Moon, HyungBin, 2022. "Which consumers are willing to pay for smart car healthcare services? A discrete choice experiment approach," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    14. Sungho Park & Sachin Gupta, 2012. "Comparison of SML and GMM estimators for the random coefficient logit model using aggregate data," Empirical Economics, Springer, vol. 43(3), pages 1353-1372, December.
    15. Kiran Tomlinson & Johan Ugander & Austin R. Benson, 2021. "Choice Set Confounding in Discrete Choice," Papers 2105.07959,, revised Aug 2021.
    16. Lewis, David J., 2010. "An economic framework for forecasting land-use and ecosystem change," Resource and Energy Economics, Elsevier, vol. 32(2), pages 98-116, April.
    17. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    18. repec:ebl:ecbull:v:30:y:2010:i:1:p:437-449 is not listed on IDEAS
    19. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    20. Timothy J. Richards & Stephen F. Hamilton & William J. Allender, 2014. "Social Networks and New Product Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(2), pages 489-516.
    21. Wang, Shuxian & Wu, Linhai & Zhu, Dian & Wang, Hongsha & Xu, Lingling, 2014. "Chinese consumers’ preferences and willingness to pay for traceable food attributes: The case of pork," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 165639, Agricultural and Applied Economics Association.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:16:y:2005:i:3:p:267-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.