IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v16y2005i3p267-278.html
   My bibliography  Save this article

Spatial Models in Marketing

Author

Listed:
  • Eric Bradlow
  • Bart Bronnenberg
  • Gary Russell
  • Neeraj Arora
  • David Bell
  • Sri Duvvuri
  • Frankel Hofstede
  • Catarina Sismeiro
  • Raphael Thomadsen
  • Sha Yang

Abstract

Marketing science models typically assume that responses of one entity (firm or consumer) are unrelated to responses of other entities. In contrast, models constructed using tools from spatial statistics allow for cross-sectional and longitudinal correlations among responses to be explicitly modeled by locating entities on some type of map. By generalizing the notion of a map to include demographic and psychometric representations, spatial models can capture a variety of effects (spatial lags, spatial autocorrelation, and spatial drift) that impact firm or consumer decision behavior. Marketing science applications of spatial models and important research opportunities are discussed. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Eric Bradlow & Bart Bronnenberg & Gary Russell & Neeraj Arora & David Bell & Sri Duvvuri & Frankel Hofstede & Catarina Sismeiro & Raphael Thomadsen & Sha Yang, 2005. "Spatial Models in Marketing," Marketing Letters, Springer, vol. 16(3), pages 267-278, December.
  • Handle: RePEc:kap:mktlet:v:16:y:2005:i:3:p:267-278
    DOI: 10.1007/s11002-005-5891-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11002-005-5891-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-005-5891-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bart J. Bronnenberg & Vijay Mahajan, 2001. "Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotion Variables," Marketing Science, INFORMS, vol. 20(3), pages 284-299, October.
    2. Michel Wedel & Rik Pieters, 2000. "Eye Fixations on Advertisements and Memory for Brands: A Model and Findings," Marketing Science, INFORMS, vol. 19(4), pages 297-312, October.
    3. Frenkel Ter Hofstede & Michel Wedel & Jan-Benedict E.M. Steenkamp, 2002. "Identifying Spatial Segments in International Markets," Marketing Science, INFORMS, vol. 21(2), pages 160-177, July.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, Enero-Abr.
    5. Marshall P. & Bradlow E.T., 2002. "A Unified Approach to Conjoint Analysis Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 674-682, September.
    6. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    7. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    8. Simon P. Anderson & André De Palma, 1988. "Spatial Price Discrimination with Heterogeneous Products," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(4), pages 573-592.
    9. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bart J. Bronnenberg & Carl F. Mela, 2004. "Market Roll-Out and Retailer Adoption for New Brands," Marketing Science, INFORMS, vol. 23(4), pages 500-518, September.
    2. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    3. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    4. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    5. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    6. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    7. Woo, JongRoul & Choi, Jae Young & Shin, Jungwoo & Lee, Jongsu, 2014. "The effect of new media on consumer media usage: An empirical study in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 3-11.
    8. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
    9. Lee, Hwarang & Koo, Yoonmo, 2024. "Analysis of user acceptance of information and communications technology for electrical safety inspection based on a choice experiment and hierarchical Bayesian model," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    10. Sicsic, Jonathan & Krucien, Nicolas & Franc, Carine, 2016. "What are GPs' preferences for financial and non-financial incentives in cancer screening? Evidence for breast, cervical, and colorectal cancers," Social Science & Medicine, Elsevier, vol. 167(C), pages 116-127.
    11. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    12. Mueller, Milton L. & Park, Yuri & Lee, Jongsu & Kim, Tai-Yoo, 2006. "Digital identity: How users value the attributes of online identifiers," Information Economics and Policy, Elsevier, vol. 18(4), pages 405-422, November.
    13. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    14. P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
    15. Lalit Jain & Zhaoqi Li & Erfan Loghmani & Blake Mason & Hema Yoganarasimhan, 2024. "Effective Adaptive Exploration of Prices and Promotions in Choice-Based Demand Models," Marketing Science, INFORMS, vol. 43(5), pages 1002-1030, September.
    16. Nicholas Economides & Przemyslaw Jeziorski, 2017. "Mobile Money in Tanzania," Marketing Science, INFORMS, vol. 36(6), pages 815-837, November.
    17. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    18. Daeho Lee & Jungwoo Shin & Junseok Hwang, 2011. "Application-Based Quality Assessment of Internet Access Service," TEMEP Discussion Papers 201183, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2011.
    19. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    20. Youssef M. Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2021. "Discrete Choice Analysis with Machine Learning Capabilities," Papers 2101.10261, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:16:y:2005:i:3:p:267-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.