IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v30y2011i2p321-338.html
   My bibliography  Save this article

Efficient Choice Designs for a Consider-Then-Choose Model

Author

Listed:
  • Qing Liu

    (Department of Marketing, University of Wisconsin-Madison, Madison, Wisconsin 53706)

  • Neeraj Arora

    (Department of Marketing, University of Wisconsin-Madison, Madison, Wisconsin 53706)

Abstract

Existing research on choice designs focuses exclusively on compensatory models that assume that all available alternatives are considered in the choice process. In this paper, we develop a method to construct efficient designs for a two-stage, consider-then-choose model that involves a noncompensatory screening process at the first stage and a compensatory choice process at the second stage. The method applies to both conjunctive and disjunctive screening rules. Under certain conditions, the method also applies to the subset conjunctive and disjunctions of conjunctions screening rules. Based on the local design criterion, we conduct a comparative study of compensatory and conjunctive designs--the former are optimized for a compensatory model and the latter for a two-stage model that uses conjunctive screening in its first stage. We find that conjunctive designs have higher level overlap than compensatory designs. This occurs because level overlap helps pinpoint screening behavior. Higher overlap of conjunctive designs is also accompanied by lower orthogonality, less level balance, and more utility balance. We find that compensatory designs have a significant loss of design efficiency when the true model involves conjunctive screening at the consideration stage. These designs also have much less power than conjunctive designs in identifying a true consider-then-choose process with conjunctive screening. In contrast, when the true model is compensatory, the efficiency loss from using a conjunctive design is lower. Also, conjunctive designs have about the same power as compensatory designs in identifying a true compensatory choice process. Our findings make a strong case for the use of conjunctive designs when there is prior evidence to support respondent screening.

Suggested Citation

  • Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
  • Handle: RePEc:inm:ormksc:v:30:y:2011:i:2:p:321-338
    DOI: 10.1287/mksc.1100.0629
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1100.0629
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1100.0629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajeev Kohli & Kamel Jedidi, 2005. "Probabilistic Subset Conjunction," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 737-757, December.
    2. Fasheng Sun & Min-Qian Liu & Dennis K. J. Lin, 2009. "Construction of orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 971-974.
    3. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    4. Timothy J. Gilbride & Greg M. Allenby, 2006. "Estimating Heterogeneous EBA and Economic Screening Rule Choice Models," Marketing Science, INFORMS, vol. 25(5), pages 494-509, September.
    5. Lussier, Denis A & Olshavsky, Richard W, 1979. "Task Complexity and Contingent Processing in Brand Choice," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 6(2), pages 154-165, Se.
    6. Zhu, Wei & Timmermans, Harry, 2009. "Modelling pedestrian go-home decisions: A comparison of linear and nonlinear compensatory, and conjunctive non-compensatory specifications," Journal of Retailing and Consumer Services, Elsevier, vol. 16(3), pages 227-231.
    7. Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
    8. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    9. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    10. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    11. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    12. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    13. Kessels, Roselinde & Jones, Bradley & Goos, Peter & Vandebroek, Martina, 2009. "An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 279-291.
    14. Araña, Jorge E. & León, Carmelo J. & Hanemann, Michael W., 2008. "Emotions and decision rules in discrete choice experiments for valuing health care programmes for the elderly," Journal of Health Economics, Elsevier, vol. 27(3), pages 753-769, May.
    15. Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
    16. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    17. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    2. Christian Schlereth & Fabian Schulz, 2014. "Schnelle und einfache Messung von Bedeutungsgewichten mit der Restricted-Click-Stream Analyse: Ein Vergleich mit etablierten Präferenzmessmethoden," Schmalenbach Journal of Business Research, Springer, vol. 66(8), pages 630-657, December.
    3. Lu, Zhentong, 2022. "Estimating multinomial choice models with unobserved choice sets," Journal of Econometrics, Elsevier, vol. 226(2), pages 368-398.
    4. Jimmy Q. Li & Paat Rusmevichientong & Duncan Simester & John N. Tsitsiklis & Spyros I. Zoumpoulis, 2015. "The Value of Field Experiments," Management Science, INFORMS, vol. 61(7), pages 1722-1740, July.
    5. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    6. Raphael Thomadsen & Robert P. Rooderkerk & On Amir & Neeraj Arora & Bryan Bollinger & Karsten Hansen & Leslie John & Wendy Liu & Aner Sela & Vishal Singh & K. Sudhir & Wendy Wood, 2018. "How Context Affects Choice," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 3-14, March.
    7. Youyi Bi & Yunjian Qiu & Zhenghui Sha & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2021. "Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis," Networks and Spatial Economics, Springer, vol. 21(2), pages 365-385, June.
    8. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    9. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    10. Ofer Mintz & Imran S. Currim & Ivan Jeliazkov, 2013. "Information Processing Pattern and Propensity to Buy: An Investigation of Online Point-of-Purchase Behavior," Marketing Science, INFORMS, vol. 32(5), pages 716-732, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    2. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    3. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    4. Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
    5. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    6. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    7. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    8. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    9. Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
    10. Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
    11. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    12. Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
    13. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    14. Raphael Thomadsen & Robert P. Rooderkerk & On Amir & Neeraj Arora & Bryan Bollinger & Karsten Hansen & Leslie John & Wendy Liu & Aner Sela & Vishal Singh & K. Sudhir & Wendy Wood, 2018. "How Context Affects Choice," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 3-14, March.
    15. Jourdain, Damien & Lairez, Juliette & Striffler, Bruno & Lundhede, Thomas, 2022. "A choice experiment approach to evaluate maize farmers’ decision-making processes in Lao PDR," Journal of choice modelling, Elsevier, vol. 44(C).
    16. Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
    17. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    18. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    19. Neeraj Arora & Ty Henderson & Qing Liu, 2011. "Noncompensatory Dyadic Choices," Marketing Science, INFORMS, vol. 30(6), pages 1028-1047, November.
    20. Fischer, Anke & Glenk, Klaus, 2011. "One model fits all? -- On the moderating role of emotional engagement and confusion in the elicitation of preferences for climate change adaptation policies," Ecological Economics, Elsevier, vol. 70(6), pages 1178-1188, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:30:y:2011:i:2:p:321-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.