IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i10p7362-7382.html
   My bibliography  Save this article

Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model

Author

Listed:
  • Xiangyu Gao

    (Department of Decision Sciences and Managerial Economics, CUHK Business School, The Chinese University of Hong Kong, Hong Kong, China)

  • Stefanus Jasin

    (Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109)

  • Sajjad Najafi

    (Department of Information Systems and Operations Management, HEC Paris, Jouy-en-Josas 78350, France)

  • Huanan Zhang

    (Leeds School of Business, University of Colorado Boulder, Boulder, Colorado 80309)

Abstract

We consider joint learning and optimization problems under a general Cascade Click model. Under this model, customers examine the products in a decreasing order of display, from the top to (potentially) the bottom of the list. At each step, customers can decide to either purchase the current product, forego the current product and continue examining the next product, or simply terminate the search without purchasing any product. We first consider the core pricing problem, where the display position (ranking) of each product is fixed and the only decision that the firm needs to make is pricing. We then consider an extension to the problem of joint ranking and pricing in the presence of filtering options, which the customers can use to filter out some undesirable products. For both problems, we develop Upper Confidence Bound (UCB)-based joint learning and optimization algorithms with theoretical performance guarantees. The key challenge here is in constructing a UCB algorithm that exploits the structure of the Cascade Click model while at the same time taking into account all of the historical click and purchase information. Our numerical results yield three key insights. First, naively applying a standard black box UCB algorithm without adapting it to the Cascade structure is very inefficient and results in a huge loss in total revenues during a finite horizon. Second, applying a learning algorithm by assuming a mis-specified model that ignores the Cascade behavior may result in a highly suboptimal solution. Third, jointly optimizing ranking and pricing can significantly improve performance. Thus, although in practice these decisions are sometimes made separately due to organizational structure, our results suggest that a significant benefit can be realized when the two decisions are more closely coordinated.

Suggested Citation

  • Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7362-7382
    DOI: 10.1287/mnsc.2021.4246
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4246
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Susan Athey & Glenn Ellison, 2011. "Position Auctions with Consumer Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1213-1270.
    3. Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
    4. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    5. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    6. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2016. "Real-Time Dynamic Pricing with Minimal and Flexible Price Adjustment," Management Science, INFORMS, vol. 62(8), pages 2437-2455, August.
    7. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    8. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    9. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    10. Nan Yang & Renyu Zhang, 2014. "Dynamic Pricing and Inventory Management Under Inventory-Dependent Demand," Operations Research, INFORMS, vol. 62(5), pages 1077-1094, October.
    11. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    12. Yongmin Chen & Chuan He, 2011. "Paid Placement: Advertising and Search on the Internet," Economic Journal, Royal Economic Society, vol. 121(556), pages 309-328, November.
    13. J. J. McCall, 1970. "Economics of Information and Job Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(1), pages 113-126.
    14. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
    15. Laura Wagner & Victor Martínez-de-Albéniz, 2020. "Pricing and Assortment Strategies with Product Exchanges," Operations Research, INFORMS, vol. 68(2), pages 453-466, March.
    16. Chenhao Du & William L. Cooper & Zizhuo Wang, 2016. "Optimal Pricing for a Multinomial Logit Choice Model with Network Effects," Operations Research, INFORMS, vol. 64(2), pages 441-455, April.
    17. Goker Aydin & Evan L. Porteus, 2008. "Joint Inventory and Pricing Decisions for an Assortment," Operations Research, INFORMS, vol. 56(5), pages 1247-1255, October.
    18. Joseph L. Gastwirth, 1976. "On Probabilistic Models of Consumer Search for Information," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 90(1), pages 38-50.
    19. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    20. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    21. Tat Y. Chan & Young-Hoon Park, 2015. "Consumer Search Activities and the Value of Ad Positions in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 34(4), pages 606-623, July.
    22. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    23. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.
    24. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    25. Nan Liu & Yuhang Ma & Huseyin Topaloglu, 2020. "Assortment Optimization Under the Multinomial Logit Model with Sequential Offerings," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 835-853, July.
    26. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    27. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    28. Heng Zhang & Paat Rusmevichientong & Huseyin Topaloglu, 2020. "Assortment Optimization Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 68(3), pages 741-761, May.
    29. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    30. Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing in the Presence of Strategic Consumers and Oligopolistic Competition," Management Science, INFORMS, vol. 55(1), pages 32-46, January.
    31. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    32. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leon Yang Chu & Hamid Nazerzadeh & Heng Zhang, 2020. "Position Ranking and Auctions for Online Marketplaces," Management Science, INFORMS, vol. 66(8), pages 3617-3634, August.
    2. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.
    3. Jing-Sheng Song & Zhengliang Xue, 2021. "Demand Shaping Through Bundling and Product Configuration: A Dynamic Multiproduct Inventory-Pricing Model," Operations Research, INFORMS, vol. 69(2), pages 525-544, March.
    4. Yiwei Chen & Nikolaos Trichakis, 2021. "Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy," Operations Research, INFORMS, vol. 69(1), pages 175-187, January.
    5. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    6. Ioannis Stamatopoulos & Christos Tzamos, 2019. "Design and Dynamic Pricing of Vertically Differentiated Inventories," Management Science, INFORMS, vol. 65(9), pages 4222-4241, September.
    7. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2019. "Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 601-631, May.
    8. Tat Y. Chan & Young-Hoon Park, 2015. "Consumer Search Activities and the Value of Ad Positions in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 34(4), pages 606-623, July.
    9. Guillermo Gallego & Michael Z. F. Li & Yan Liu, 2020. "Dynamic Nonlinear Pricing of Inventories over Finite Sales Horizons," Operations Research, INFORMS, vol. 68(3), pages 655-670, May.
    10. Schlicher, Loe & Lurkin, Virginie, 2022. "Stable allocations for choice-based collaborative price setting," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1242-1254.
    11. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    12. Frank Huettner & Tamer Boyacı & Yalçın Akçay, 2019. "Consumer Choice Under Limited Attention When Alternatives Have Different Information Costs," Operations Research, INFORMS, vol. 67(3), pages 671-699, May.
    13. Sentao Miao & Xiuli Chao, 2021. "Dynamic Joint Assortment and Pricing Optimization with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 525-545, March.
    14. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    15. Yao Cui & A. Yeşim Orhun & Izak Duenyas, 2019. "How Price Dispersion Changes When Upgrades Are Introduced: Theory and Empirical Evidence from the Airline Industry," Management Science, INFORMS, vol. 65(8), pages 3835-3852, August.
    16. Jalali, Hamed & Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Boute, Robert, 2019. "Quality and pricing decisions in production/inventory systems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 195-206.
    17. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2016. "Real-Time Dynamic Pricing with Minimal and Flexible Price Adjustment," Management Science, INFORMS, vol. 62(8), pages 2437-2455, August.
    18. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    19. Giovanni Compiani & Gregory Lewis & Sida Peng & Peichun Wang, 2024. "Online Search and Optimal Product Rankings: An Empirical Framework," Marketing Science, INFORMS, vol. 43(3), pages 615-636, May.
    20. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7362-7382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.