IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i10p1605-1622.html
   My bibliography  Save this article

An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets

Author

Listed:
  • Anindya Ghose

    () (Leonard N. Stern School of Business, New York University, New York, New York 10012)

  • Sha Yang

    () (Leonard N. Stern School of Business, New York University, New York, New York 10012; and School of Economics and Management, Southwest Jiaotong University, 610031 Chenfgdu, China)

Abstract

The phenomenon of sponsored search advertising--where advertisers pay a fee to Internet search engines to be displayed alongside organic (nonsponsored) Web search results--is gaining ground as the largest source of revenues for search engines. Using a unique six-month panel data set of several hundred keywords collected from a large nationwide retailer that advertises on Google, we empirically model the relationship between different sponsored search metrics such as click-through rates, conversion rates, cost per click, and ranking of advertisements. Our paper proposes a novel framework to better understand the factors that drive differences in these metrics. We use a hierarchical Bayesian modeling framework and estimate the model using Markov Chain Monte Carlo methods. Using a simultaneous equations model, we quantify the relationship between various keyword characteristics, position of the advertisement, and the landing page quality score on consumer search and purchase behavior as well as on advertiser's cost per click and the search engine's ranking decision. Specifically, we find that the monetary value of a click is not uniform across all positions because conversion rates are highest at the top and decrease with rank as one goes down the search engine results page. Though search engines take into account the current period's bid as well as prior click-through rates before deciding the final rank of an advertisement in the current period, the current bid has a larger effect than prior click-through rates. We also find that an increase in landing page quality scores is associated with an increase in conversion rates and a decrease in advertiser's cost per click. Furthermore, our analysis shows that keywords that have more prominent positions on the search engine results page, and thus experience higher click-through or conversion rates, are not necessarily the most profitable ones--profits are often higher at the middle positions than at the top or the bottom ones. Besides providing managerial insights into search engine advertising, these results shed light on some key assumptions made in the theoretical modeling literature in sponsored search.

Suggested Citation

  • Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:10:p:1605-1622
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1090.1054
    Download Restriction: no

    References listed on IDEAS

    as
    1. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    2. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    3. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    4. Yongmin Chen & Chuan He, 2011. "Paid Placement: Advertising and Search on the Internet," Economic Journal, Royal Economic Society, vol. 121(556), pages 309-328, November.
    5. Kenneth C. Wilbur, 2008. "A Two-Sided, Empirical Model of Television Advertising and Viewing Markets," Marketing Science, INFORMS, vol. 27(3), pages 356-378, 05-06.
    6. Eric T. Bradlow & David C. Schmittlein, 2000. "The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines," Marketing Science, INFORMS, vol. 19(1), pages 43-62, June.
    7. Chandra, Ambarish, 2008. "Targeted Advertising: The Role of Subscriber Characteristics in Media Markets," MPRA Paper 7955, University Library of Munich, Germany.
    8. Patrali Chatterjee & Donna L. Hoffman & Thomas P. Novak, 2003. "Modeling the Clickstream: Implications for Web-Based Advertising Efforts," Marketing Science, INFORMS, vol. 22(4), pages 520-541, May.
    9. Danaher, Peter J. & Mullarkey, Guy W., 2003. "Factors Affecting Online Advertising Recall: A Study of Students," Journal of Advertising Research, Cambridge University Press, vol. 43(03), pages 252-267, September.
    10. Lahiri, Kajal & Schmidt, Peter, 1978. "On the Estimation of Triangular Structural Systems," Econometrica, Econometric Society, vol. 46(5), pages 1217-1221, September.
    11. Avi Goldfarb & Catherine Tucker, 2007. "Search Engine Advertising: Pricing Ads to Context," Working Papers 07-23, NET Institute, revised Sep 2007.
    12. Tilman B?rgers & Ingemar Cox & Martin Pesendorfer & Vaclav Petricek, 2013. "Equilibrium Bids in Sponsored Search Auctions: Theory and Evidence," American Economic Journal: Microeconomics, American Economic Association, vol. 5(4), pages 163-187, November.
    13. Michael R. Baye & John Morgan, 2001. "Information Gatekeepers on the Internet and the Competitiveness of Homogeneous Product Markets," American Economic Review, American Economic Association, vol. 91(3), pages 454-474, June.
    14. Brynjolfsson, Erik & Dick, Astrid Andrea & Smith, Michael D., 2004. "Search and Product Differentiation at an Internet Shopbot," Working papers 4441-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    15. Hausman, Jerry A, 1975. "An Instrumental Variable Approach to Full Information Estimators for Linear and Certain Nonlinear Econometric Models," Econometrica, Econometric Society, vol. 43(4), pages 727-738, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:10:p:1605-1622. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.