IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence?

  • Sha Yang

    ()

    (Stern School of Business, New York University, New York, New York 10012)

  • Anindya Ghose

    ()

    (Stern School of Business, New York University, New York, New York 10012)

Registered author(s):

    The phenomenon of paid search advertising has now become the most predominant form of online advertising in the marketing world. However, we have little understanding of the impact of search engine advertising on consumers' responses in the presence of organic listings of the same firms. In this paper, we model and estimate the interrelationship between organic search listings and paid search advertisements. We use a unique panel data set based on aggregate consumer response to several hundred keywords over a three-month period collected from a major nationwide retailer store chain that advertises on Google. In particular, we focus on understanding whether the presence of organic listings on a search engine is associated with a positive, a negative, or no effect on the click-through rates of paid search advertisements, and vice versa for a given firm. We first build an integrated model to estimate the relationship between different metrics such as search volume, click-through rates, conversion rates, cost per click, and keyword ranks. A hierarchical Bayesian modeling framework is used and the model is estimated using Markov chain Monte Carlo methods. Our empirical findings suggest that click-throughs on organic listings have a positive interdependence with click-throughs on paid listings, and vice versa. We also find that this positive interdependence is asymmetric such that the impact of organic clicks on increases in utility from paid clicks is 3.5 times stronger than the impact of paid clicks on increases in utility from organic clicks. Using counterfactual experiments, we show that on an average this positive interdependence leads to an increase in expected profits for the firm ranging from 4.2% to 6.15% when compared to profits in the absence of this interdependence. To further validate our empirical results, we also conduct and present the results from a controlled field experiment. This experiment shows that total click-through rates, conversions rates, and revenues in the presence of both paid and organic search listings are significantly higher than those in the absence of paid search advertisements. The results predicted by the econometric model are also corroborated in this field experiment, which suggests a causal interpretation to the positive interdependence between paid and organic search listings. Given the increased spending on search engine-based advertising, our analysis provides critical insights to managers in both traditional and Internet firms.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.1090.0552
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 29 (2010)
    Issue (Month): 4 (07-08)
    Pages: 602-623

    as
    in new window

    Handle: RePEc:inm:ormksc:v:29:y:2010:i:4:p:602-623
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    2. Lahiri, Kajal & Schmidt, Peter, 1978. "On the Estimation of Triangular Structural Systems," Econometrica, Econometric Society, vol. 46(5), pages 1217-21, September.
    3. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
    4. Andrés Musalem & Eric T. Bradlow & Jagmohan S. Raju, 2009. "Bayesian estimation of random‐coefficients choice models using aggregate data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 490-516, 04.
    5. Michael R. Baye & John Morgan, 2001. "Information Gatekeepers on the Internet and the Competitiveness of Homogeneous Product Markets," American Economic Review, American Economic Association, vol. 91(3), pages 454-474, June.
    6. Janiszewski, Chris, 1993. " Preattentive Mere Exposure Effects," Journal of Consumer Research, Oxford University Press, vol. 20(3), pages 376-92, December.
    7. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    8. Sangkil Moon & Gary J. Russell, 2008. "Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach," Management Science, INFORMS, vol. 54(1), pages 71-82, January.
    9. Varian, Hal R., 2007. "Position auctions," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1163-1178, December.
    10. Brynjolfsson, Erik & Dick, Astrid Andrea & Smith, Michael D., 2004. "Search and Product Differentiation at an Internet Shopbot," Working papers 4441-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Bresnahan, Timothy F & Reiss, Peter C, 1991. "Entry and Competition in Concentrated Markets," Journal of Political Economy, University of Chicago Press, vol. 99(5), pages 977-1009, October.
    12. Shapiro, Stewart & MacInnis, Deborah J & Heckler, Susan E, 1997. " The Effects of Incidental Ad Exposure on the Formation of Consideration Sets," Journal of Consumer Research, Oxford University Press, vol. 24(1), pages 94-104, June.
    13. Hawkins, Scott A & Hoch, Stephen J, 1992. " Low-Involvement Learning: Memory without Evaluation," Journal of Consumer Research, Oxford University Press, vol. 19(2), pages 212-25, September.
    14. Hausman, Jerry A, 1975. "An Instrumental Variable Approach to Full Information Estimators for Linear and Certain Nonlinear Econometric Models," Econometrica, Econometric Society, vol. 43(4), pages 727-38, July.
    15. Avi Goldfarb & Catherine Tucker, 2007. "Search Engine Advertising: Pricing Ads to Context," Working Papers 07-23, NET Institute, revised Sep 2007.
    16. Patrali Chatterjee & Donna L. Hoffman & Thomas P. Novak, 2003. "Modeling the Clickstream: Implications for Web-Based Advertising Efforts," Marketing Science, INFORMS, vol. 22(4), pages 520-541, May.
    17. Patrick Bajari & Han Hong & John Krainer & Denis Nekipelov, 2006. "Estimating Static Models of Strategic Interaction," NBER Working Papers 12013, National Bureau of Economic Research, Inc.
    18. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    19. Nelson, Forrest & Olson, Lawrence, 1978. "Specification and Estimation of a Simultaneous-Equation Model with Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(3), pages 695-709, October.
    20. Zsolt Katona & Miklos Sarvary, 2010. "The Race for Sponsored Links: Bidding Patterns for Search Advertising," Marketing Science, INFORMS, vol. 29(2), pages 199-215, 03-04.
    21. Kenneth C. Wilbur & Yi Zhu, 2009. "Click Fraud," Marketing Science, INFORMS, vol. 28(2), pages 293-308, 03-04.
    22. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    23. Eric T. Bradlow & David C. Schmittlein, 2000. "The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines," Marketing Science, INFORMS, vol. 19(1), pages 43-62, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:29:y:2010:i:4:p:602-623. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.