IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v70y2005i4p737-757.html
   My bibliography  Save this article

Probabilistic Subset Conjunction

Author

Listed:
  • Rajeev Kohli
  • Kamel Jedidi

Abstract

No abstract is available for this item.

Suggested Citation

  • Rajeev Kohli & Kamel Jedidi, 2005. "Probabilistic Subset Conjunction," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 737-757, December.
  • Handle: RePEc:spr:psycho:v:70:y:2005:i:4:p:737-757
    DOI: 10.1007/s11336-002-0978-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-002-0978-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-002-0978-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huber, Joel & Klein, Noreen M, 1991. "Adapting Cutoffs to the Choice Environment: The Effects of Attribute Correlation and Reliability," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 18(3), pages 346-357, December.
    2. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    2. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Consistently inconsistent: The role of certainty, acceptability and scale in choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 81-93.
    3. Marley, A.A.J. & Swait, J., 2017. "Goal-based models for discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 72-88.
    4. J. DeShazo & Trudy Cameron & Manrique Saenz, 2009. "The Effect of Consumers’ Real-World Choice Sets on Inferences from Stated Preference Surveys," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 319-343, March.
    5. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    2. Hans-Friedrich Köhn & Chia-Yi Chiu, 2016. "A Proof of the Duality of the DINA Model and the DINO Model," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 171-184, July.
    3. Moser, Riccarda & Raffaelli, Roberta, 2011. "Exploiting cut-off information to incorporate context effect: a discrete choice experiment on small fruits in a Alpine region," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114646, European Association of Agricultural Economists.
    4. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    5. Elrod, Terry & Johnson, Richard D. & White, Joan, 2004. "A new integrated model of noncompensatory and compensatory decision strategies," Organizational Behavior and Human Decision Processes, Elsevier, vol. 95(1), pages 1-19, September.
    6. Román, Concepción & Arencibia, Ana Isabel & Feo-Valero, María, 2017. "A latent class model with attribute cut-offs to analyze modal choice for freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 212-227.
    7. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    8. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    9. Chia-Yi Chiu & Hans-Friedrich Köhn, 2019. "Consistency Theory for the General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 830-845, September.
    10. Lurie, Nicholas H. & Wen, Na, 2014. "Simple Decision Aids and Consumer Decision Making," Journal of Retailing, Elsevier, vol. 90(4), pages 511-523.
    11. Yan, Huan & Chang, En-Chung & Chou, Ting-Jui & Tang, Xiaofei, 2015. "The over-categorization effect: How the number of categorizations influences shoppers' perceptions of variety and satisfaction," Journal of Business Research, Elsevier, vol. 68(3), pages 631-638.
    12. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
    13. Shiyu Wang & Yan Yang & Steven Andrew Culpepper & Jeffrey A. Douglas, 2018. "Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 57-87, February.
    14. Matthias Davier & Shelby Haberman, 2014. "Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 340-346, April.
    15. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    16. Marisol Castro & Francisco Martínez & Marcela Munizaga, 2013. "Estimation of a constrained multinomial logit model," Transportation, Springer, vol. 40(3), pages 563-581, May.
    17. S. Iglesias-Parro & A. Ortega & E. De la Fuente & I. Martín, 2001. "Context Variables as Cognitive Effort Modulators in Decision Making Using an Alternative-Based Processing Strategy," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(3), pages 311-323, August.
    18. Michel Meulders & Paul Boeck & Iven Mechelen, 2003. "A taxonomy of latent structure assumptions for probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 61-77, March.
    19. Xuliang Gao & Wenchao Ma & Daxun Wang & Yan Cai & Dongbo Tu, 2021. "A Class of Cognitive Diagnosis Models for Polytomous Data," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 297-322, June.
    20. Wei Zhu & Harry Timmermans, 2008. "Cut-off Models for the ‘Go-Home’ Decision of Pedestrians in Shopping Streets," Environment and Planning B, , vol. 35(2), pages 248-260, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:70:y:2005:i:4:p:737-757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.