IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i11p7601-7620d41769.html
   My bibliography  Save this article

Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin

Author

Listed:
  • Minjun Shi

    (School of Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Research Centre on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, China)

  • Xiaojun Wang

    (School of Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Research Centre on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, China)

  • Hong Yang

    (Swiss Federal institute for Aquatic Science and Technology (Eawag), Ueberlandstrasse 133, Duebendorf 8600, Switzerland)

  • Tao Wang

    (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract

The conflict between increasing water demand and limited water resources has become a serious threat to oasis regions in China. Solutions to water scarcity have to curb overall water demands, especially reducing agricultural water use. Price control and quantitative control are the two most commonly applied policy instruments for water demand management. This paper used a bio-economic model (BEM) to examine the shadow price of water resources and to investigate farmers’ response to water demand management policies in water scarce regions based on a study in the Heihe River Basin in northwest China. The results indicate that farmers are not very responsive to changes in water price, because it is currently far below the shadow price of water resources in most irrigation zones. A reduction of agricultural water demand could occur only with a large rise in the water price. In comparison, a quantitative control measure is more effective at reducing water use. Concerning the effects on farm income, a price control will cost much more than a quantitative control to save the same volume of water. Hence, a water quota is a more suitable choice for the purpose of reducing agricultural water use, while minimizing farm income loss in the region of this case study.

Suggested Citation

  • Minjun Shi & Xiaojun Wang & Hong Yang & Tao Wang, 2014. "Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin," Sustainability, MDPI, vol. 6(11), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:11:p:7601-7620:d:41769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/11/7601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/11/7601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsur, Yacov & Dinar, Ariel, 1997. "The Relative Efficiency and Implementation Costs of Alternative Methods for Pricing Irrigation Water," The World Bank Economic Review, World Bank, vol. 11(2), pages 243-262, May.
    2. Vos, Jeroen & Vincent, Linden, 2011. "Volumetric water control in a large-scale open canal irrigation system with many smallholders: The case of Chancay-Lambayeque in Peru," Agricultural Water Management, Elsevier, vol. 98(4), pages 705-714, February.
    3. Rui Fragoso & Carlos Marques, 2013. "The Economic Impact of Alternative Water Pricing Policies in Alentejo Region," CEFAGE-UE Working Papers 2013_02, University of Evora, CEFAGE-UE (Portugal).
    4. Huang, Qiuqiong & Rozelle, Scott & Howitt, Richard & Wang, Jinxia & Huang, Jikun, 2010. "Irrigation water demand and implications for water pricing policy in rural China," Environment and Development Economics, Cambridge University Press, vol. 15(3), pages 293-319, June.
    5. Consuelo Varela‐Ortega & José M. Sumpsi & Alberto Garrido & María Blanco & Eva Iglesias, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 193-202, September.
    6. Jinxia Wang & Jikun Huang & Zhigang Xu & Scott Rozelle & Hussain, Intizar & Biltonen, Eric & Qiuqiong Huang & Siwa Msangi, 2004. "Pro-poor intervention strategies in irrigated agriculture in Asia: poverty in irrigated agriculture: issues and options: China," IWMI Research Reports H036150, International Water Management Institute.
    7. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Wei, Yongping & Chen, Deli & Hu, Kelin & Willett, Ian R. & Langford, John, 2009. "Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 96(7), pages 1114-1119, July.
    10. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    11. Tsur, Yacov & Dinar, Ariel, 1995. "Efficiency and equity considerations in pricing and allocating irrigation water," Policy Research Working Paper Series 1460, The World Bank.
    12. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    13. Wichelns, Dennis, 2002. "Economic analysis of water allocation policies regarding Nile River water in Egypt," Agricultural Water Management, Elsevier, vol. 52(2), pages 155-175, January.
    14. Varela-Ortega, Consuelo & M. Sumpsi, Jose & Garrido, Alberto & Blanco, Maria & Iglesias, Eva, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, Blackwell, vol. 19(1-2), pages 193-202, September.
    15. Mul, M.L. & Kemerink, J.S. & Vyagusa, N.F. & Mshana, M.G. & van der Zaag, P. & Makurira, H., 2011. "Water allocation practices among smallholder farmers in the South Pare Mountains, Tanzania: The issue of scale," Agricultural Water Management, Elsevier, vol. 98(11), pages 1752-1760, September.
    16. Abu-Madi, Maher O., 2009. "Farm-level perspectives regarding irrigation water prices in the Tulkarm district, Palestine," Agricultural Water Management, Elsevier, vol. 96(9), pages 1344-1350, September.
    17. Appels, David & Douglas, Robert A. & Dwyer, Gavan, 2004. "Responsiveness of Demand for Irrigation Water: A Focus on the Southern Murray-Darling Basin," Staff Working Papers 31924, Productivity Commission.
    18. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    19. Qu, Futian & Kuyvenhoven, Arie & Shi, Xiaoping & Heerink, Nico, 2011. "Sustainable natural resource use in rural China: Recent trends and policies," China Economic Review, Elsevier, vol. 22(4), pages 444-460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haijing Zhang & Qingyun Du & Min Yao & Fu Ren, 2016. "Evaluation and Clustering Maps of Groundwater Wells in the Red Beds of Chengdu, Sichuan, China," Sustainability, MDPI, vol. 8(1), pages 1-21, January.
    2. Molinos-Senante, María & Villegas, Andres & Maziotis, Alexandros, 2019. "Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile," Utilities Policy, Elsevier, vol. 61(C).
    3. Hailiang Ma & Chenling Shi & Nan-Ting Chou, 2016. "China’s Water Utilization Efficiency: An Analysis with Environmental Considerations," Sustainability, MDPI, vol. 8(6), pages 1-15, May.
    4. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Yiyu Feng & Ming Chang & Erga Luo & Jing Liu, 2023. "Has Property Rights Reform of China’s Farmland Water Facilities Improved Farmers’ Irrigation Efficiency?—Evidence from a Typical Reform Pilot in China’s Yunnan Province," Agriculture, MDPI, vol. 13(2), pages 1-27, January.
    6. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    7. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    8. Hong, Yu & Berentsen, Paul & Heerink, Nico & Shi, Minjun & van der Werf, Wopke, 2019. "The future of intercropping under growing resource scarcity and declining grain prices - A model analysis based on a case study in Northwest China," Agricultural Systems, Elsevier, vol. 176(C).
    9. Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    10. Hong, Yu & Heerink, Nico & van der Werf, Wopke, 2020. "Farm size and smallholders’ use of intercropping in Northwest China," Land Use Policy, Elsevier, vol. 99(C).
    11. Na Li & Xiaojun Wang & Minjun Shi & Hong Yang, 2015. "Economic Impacts of Total Water Use Control in the Heihe River Basin in Northwestern China—An Integrated CGE-BEM Modeling Approach," Sustainability, MDPI, vol. 7(3), pages 1-19, March.
    12. Yi Liu & Peng Li & Zhiwei Zhang, 2018. "Resilient or Not: A Comparative Case Study of Ten Local Water Markets in China," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    13. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    14. Khampheng Boudmyxay & Shuai Zhong & Lei Shen, 2019. "Designing Optimum Water-Saving Policy in China Using Quantity and Price Control Mechanisms," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    15. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    16. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Yu Liu & Xiaohong Hu & Qian Zhang & Mingbo Zheng, 2017. "Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    18. Christopher Schulz & Antonio A. R. Ioris, 2017. "The Paradox of Water Abundance in Mato Grosso, Brazil," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    19. Heng Yi Teah & Tomohiro Akiyama & Ricardo San Carlos & Orlando Vargas Rayo & Yu Ting Joanne Khew & Sijia Zhao & Lingfeng Zheng & Motoharu Onuki, 2016. "Assessment of Downscaling Planetary Boundaries to Semi-Arid Ecosystems with a Local Perception: A Case Study in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 8(12), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    2. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    3. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    4. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Sarah Wheeler & Henning Bjornlund & Martin Shanahan & Alec Zuo, 2008. "Price elasticity of water allocations demand in the Goulburn-Murray Irrigation District ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 37-55, March.
    6. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    7. Saraiva, Joao Paulo & Pinheiro, Antonio Cipriano, 2007. "A Multi-Criteria Approach for Irrigation Water Management," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 8(1), pages 1-13, January.
    8. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.
    9. Khampheng Boudmyxay & Shuai Zhong & Lei Shen, 2019. "Designing Optimum Water-Saving Policy in China Using Quantity and Price Control Mechanisms," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    10. Gallego-Ayala, Jordi & Gómez-Limón Rodríguez, José A., 2010. "Evaluación del impacto de la tarifación del agua de riego sobre la sostenibilidad del regadío: una aproximación a través de indicadores sintéticos/Impact assessment of irrigation water pricing in irri," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 375-404, Agosto.
    11. Alemu Mekonnen & Zenebe Gebreegziabher & Abebe D. Beyene & Fitsum Hagos, 2019. "Valuation of Access to Irrigation Water in Rural Ethiopia: Application of Choice Experiment and Contingent Valuation Methods," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-26, September.
    12. Vallés-Giménez, Jaime & Zárate-Marco , Anabel, 2013. "Environmental taxation and industrial water use in Spain," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 25, pages 133-162.
    13. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.
    14. Rui Fragoso & Carlos Marques, 2013. "The Economic Impact of Alternative Water Pricing Policies in Alentejo Region," CEFAGE-UE Working Papers 2013_02, University of Evora, CEFAGE-UE (Portugal).
    15. Blanco-Gutiérrez, Irene & Varela-Ortega, Consuelo & Flichman, Guillermo, 2011. "Cost-effectiveness of groundwater conservation measures: A multi-level analysis with policy implications," Agricultural Water Management, Elsevier, vol. 98(4), pages 639-652, February.
    16. Alfonso Expósito & Julio Berbel, 2017. "Why Is Water Pricing Ineffective for Deficit Irrigation Schemes? A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1047-1059, February.
    17. Andrea Pronti & Julio Berbel, 2020. "Analysis of the impact of a volumetric tariff for irrigation in Northern Italy through the “Inverse DiD†approach," SEEDS Working Papers 1320, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2020.
    18. Veettil, Prakashan Chellattan & Speelman, Stijn & Frija, Aymen & Buysse, Jeroen & van Huylenbroeck, Guido, 2011. "Complementarity between water pricing, water rights and local water governance: A Bayesian analysis of choice behaviour of farmers in the Krishna river basin, India," Ecological Economics, Elsevier, vol. 70(10), pages 1756-1766, August.
    19. Alfonso Expósito & Julio Berbel, 2017. "Sustainability Implications of Deficit Irrigation in a Mature Water Economy: A Case Study in Southern Spain," Sustainability, MDPI, vol. 9(7), pages 1-13, June.
    20. Wei, Yongping & Chen, Deli & Hu, Kelin & Willett, Ian R. & Langford, John, 2009. "Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 96(7), pages 1114-1119, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:11:p:7601-7620:d:41769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.