IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2096-d220996.html
   My bibliography  Save this article

How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?

Author

Listed:
  • Guifang Li

    (School of Economics, Renmin University of China, Beijing 100872, China)

  • Dingyang Zhou

    (School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Minjun Shi

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

Abstract

Reducing agricultural water use is an inevitable choice to alleviate water shortage in arid and semi-arid regions, and high-efficiency irrigation technologies provide conditions for water conservation. However, without unified water resources management policy to redistribute the saved agricultural water, farmers’ behavior will lead to water rebound and large-scale expansion of cultivated areas, especially on the edge of oasis regions. To solve these issues and promote the sustainable development of water resources, it makes sense to explore the impact of unified water resources management policy from the perspective of farmers’ behavior. This study takes the typical irrigation zone in the Heihe River Basin as a case to discuss the response of farmers’ economic behavior to transferring irrigation water and restricting land reclamation, i.e., the unified water resources management policy with the technical efficiency of crop irrigation improved based on the bio-economic model. The results show that in the case of loosening land constraints, farmers will reuse all the saved water for agricultural production by reclaiming unused land or increasing the area of water-intensive crops (vegetables). Although the policy of restricting land reclamation can restrict land expansion, it cannot avoid water rebound caused by adjusting the crop-planting structure. Farmers’ land-expansion behavior can be largely restricted by transferring the saved irrigation water to non-agricultural sectors in irrigation zones with inadequate water, but to contain land-expansion behavior in irrigation zones with surplus water, the policy of restricting land reclamation must be implemented simultaneously. The study also reveals that farmers will choose to grow more cash crops (seed maize, vegetables, tomato, seed watermelon, potato, and rapeseed) and fewer food crops (wheat, maize) to increase the profit per unit of water in the scenario of loosening land constraints or transferring agricultural water. Furthermore, the study indicates that farmers’ economic income can be decreased or at least not increased with the transfer of agricultural water. Both benefit compensation from non-agricultural sectors and increased non-agricultural income can compensate farmers’ economic loss. Therefore, it is necessary to improve water rights trading systems and increase employment opportunities for surplus agricultural labor to promote economic development in rural areas.

Suggested Citation

  • Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2096-:d:220996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    2. Zhang, Junlian, 2007. "Barriers to water markets in the Heihe River basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(1), pages 32-40, January.
    3. Godoy, Ricardo & O'neill, Kathleen & Groff, Stephen & Kostishack, Peter & Cubas, Adoni & Demmer, Josephien & Mcsweeney, Kendra & Overman, Johannes & Wilkie, David & Brokaw, Nicholas & Martinez, Marque, 1997. "Household determinants of deforestation by amerindians in honduras," World Development, Elsevier, vol. 25(6), pages 977-987, June.
    4. Kruseman, Gideon & Bade, Jan, 1998. "Agrarian policies for sustainable land use: bio-economic modelling to assess the effectiveness of policy instruments," Agricultural Systems, Elsevier, vol. 58(3), pages 465-481, November.
    5. Heaney, Anna & Dwyer, Gavan & Beare, Stephen & Peterson, Deborah C. & Pechey, Lili, 2006. "Third-party effects of water trading and potential policy responses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 1-17, September.
    6. Na Li & Xiaojun Wang & Minjun Shi & Hong Yang, 2015. "Economic Impacts of Total Water Use Control in the Heihe River Basin in Northwestern China—An Integrated CGE-BEM Modeling Approach," Sustainability, MDPI, vol. 7(3), pages 1-19, March.
    7. Ye Sun & Tomohiro Akiyama, 2018. "An Empirical Study on Sustainable Agriculture Land Use Right Transfer in the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    8. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    9. Zhang, Lei & Zhu, Xueqin & Heerink, Nico & Shi, Xiaoping, 2014. "Does output market development affect irrigation water institutions? Insights from a case study in northern China," Agricultural Water Management, Elsevier, vol. 131(C), pages 70-78.
    10. Aurélien Dumont & Beatriz Mayor & Elena López-Gunn, 2013. "Is the rebound effect or Jevons paradox a useful concept for better management of water resources? Insights from the Irrigation Modernisation Process in Spain," Post-Print halshs-00991778, HAL.
    11. Fleming, Euan & Milne, Mary, 2003. "Bioeconomic modelling of the production and export of cocoa for price policy analysis in Papua New Guinea," Agricultural Systems, Elsevier, vol. 76(2), pages 483-505, May.
    12. Deng, Xiaohong & Xu, Zhongmin & Song, Xiaoyu & Zhou, Jian, 2017. "Transaction costs associated with agricultural water trading in the Heihe River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 186(C), pages 29-39.
    13. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    14. Haoyang Li & Jinhua Zhao, 2018. "Rebound Effects of New Irrigation Technologies: The Role of Water Rights," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 786-808.
    15. S. Nedumaran & Beleke Shiferaw & M. Bantilan & K. Palanisami & Suhas Wani, 2014. "Bioeconomic modeling of farm household decisions for ex-ante impact assessment of integrated watershed development programs in semi-arid India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 257-286, April.
    16. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    17. Fisher, Monica & Shively, Gerald, 2005. "Can Income Programs Reduce Tropical Forest Pressure? Income Shocks and Forest Use in Malawi," World Development, Elsevier, vol. 33(7), pages 1115-1128, July.
    18. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    19. Minjun Shi & Xiaojun Wang & Hong Yang & Tao Wang, 2014. "Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin," Sustainability, MDPI, vol. 6(11), pages 1-20, October.
    20. Lopez-Gunn, E. & Zorrilla, P. & Prieto, F. & Llamas, M.R., 2012. "Lost in translation? Water efficiency in Spanish agriculture," Agricultural Water Management, Elsevier, vol. 108(C), pages 83-95.
    21. David Zilberman, 1997. "Allocation and Pricing at the Water District Level," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 952-963.
    22. Bekchanov, Maksud & Bhaduri, Anik & Ringler, Claudia, 2015. "Potential gains from water rights trading in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 152(C), pages 41-56.
    23. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    24. Anna Heaney & Gavan Dwyer & Stephen Beare & Deborah Peterson & Lili Pechey, 2006. "Third-party effects of water trading and potential policy responses ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 277-293, September.
    25. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zerihun Anbesa Gurmu & Henk Ritzema & Charlotte de Fraiture & Mekonen Ayana, 2019. "Stakeholder Roles and Perspectives on Sedimentation Management in Small-Scale Irrigation Schemes in Ethiopia," Sustainability, MDPI, vol. 11(21), pages 1-18, November.
    2. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Li, Guifang & Shi, Minjun & Zhou, Dingyang, 2021. "How much will farmers be compensated for water reallocation from agricultural water to the local ecological sector on the edge of an oasis in the Heihe River Basin?," Agricultural Water Management, Elsevier, vol. 249(C).
    4. Meng, Jijun & Cheng, Haoran & Li, Feng & Han, Ziyan & Wei, Chanjuan & Wu, Yingdi & You, Ng Wuh & Zhu, Likai, 2022. "Spatial-temporal trade-offs of land multi-functionality and function zoning at finer township scale in the middle reaches of the Heihe River," Land Use Policy, Elsevier, vol. 115(C).
    5. Guifang Li & Dongdong Ma & Cuiping Zhao & Hang Li, 2023. "The Effect of the Comprehensive Reform of Agricultural Water Prices on Farmers’ Planting Structure in the Oasis–Desert Transition Zone—A Case Study of the Heihe River Basin," IJERPH, MDPI, vol. 20(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    2. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    4. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    5. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    6. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    8. Li, Guifang & Shi, Minjun & Zhou, Dingyang, 2021. "How much will farmers be compensated for water reallocation from agricultural water to the local ecological sector on the edge of an oasis in the Heihe River Basin?," Agricultural Water Management, Elsevier, vol. 249(C).
    9. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    10. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    11. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    12. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    13. Jaume Freire-González, 2019. "Does Water Efficiency Reduce Water Consumption? The Economy-Wide Water Rebound Effect," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2191-2202, April.
    14. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    15. Ahmad Hamidov & Ulan Kasymov & Kakhramon Djumaboev & Carsten Paul, 2022. "Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    16. Lin Fang & Fengping Wu & Yantuan Yu & Lin Zhang, 2020. "Irrigation technology and water rebound in China's agricultural sector," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1088-1100, October.
    17. Ye Sun & Tomohiro Akiyama, 2018. "An Empirical Study on Sustainable Agriculture Land Use Right Transfer in the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    18. Songjun Han & Di Xu & Zhiyong Yang, 2017. "Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    19. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    20. Carles Sanchis-Ibor & Mar Ortega-Reig & Amanda Guillem-García & Juan M. Carricondo & Juan Manzano-Juárez & Marta García-Mollá & Álvaro Royuela, 2021. "Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)," Agriculture, MDPI, vol. 11(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2096-:d:220996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.