IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8375-d858559.html
   My bibliography  Save this article

Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment

Author

Listed:
  • Ahmad Hamidov

    (Research Area 3 “Agricultural Landscape Systems”, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
    Department of Irrigation and Melioration, “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME)” National Research University (“TIIAME” NRU), 39 Kary-Niyaziy Street, Tashkent 100000, Uzbekistan)

  • Ulan Kasymov

    (Chair of Ecosystem Services, International Institute Zittau, Technische Universität Dresden (TUD), Markt 23, 02763 Zittau, Germany)

  • Kakhramon Djumaboev

    (Regional Representative Office for Central Asia, International Water Management Institute (IWMI), Apartment 120, House 6, Osiyo Street, Tashkent 100000, Uzbekistan)

  • Carsten Paul

    (Research Area 3 “Agricultural Landscape Systems”, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany)

Abstract

There is wide consensus among scholars and practitioners that improved irrigation technologies increase farm productivity and improve resource use efficiency. However, there is also growing empirical evidence that efficiency improvements in irrigation water use may create rebound effects, i.e., they may trigger changes in farmers’ behavior that partly or fully offset the technical water savings expected under ceteris paribus conditions. In extreme cases, total water consumption may even increase. We studied the impacts of introducing water-saving irrigation technologies in Uzbekistan and used structured stakeholder interviews for an expert-based assessment of potential rebound effects. Our findings contribute to the understanding of impacts of technological and institutional responses to environmental and economic pressures in sustaining water resources. The study demonstrates that although the objective of increasing irrigation efficiency may be achieved, the actual water savings under Uzbek conditions are likely to be reduced due to rebound effects. Unless there are effective policy interventions, we expect rebound effects through an increase in water supply for crops that compensates for current shortages of irrigation water availability, an increase in irrigated area, a switch to more water-intensive crops, and overall economic growth. The findings of this paper provide a reference point for estimating the water-saving potential and for evaluating and adapting policies.

Suggested Citation

  • Ahmad Hamidov & Ulan Kasymov & Kakhramon Djumaboev & Carsten Paul, 2022. "Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8375-:d:858559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    2. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    3. Eric Crighton & Lynn Barwin & Ian Small & Ross Upshur, 2011. "What have we learned? A review of the literature on children’s health and the environment in the Aral Sea area," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 125-138, April.
    4. Reddy, J. Mohan & Jumaboev, K. & Matyakubov, B. & Eshmuratov, D., 2013. "Evaluation of furrow irrigation practices in Fergana Valley of Uzbekistan," Agricultural Water Management, Elsevier, vol. 117(C), pages 133-144.
    5. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    6. World Bank, 2013. "Uzbekistan : Overview of Climate Change Activities," World Bank Publications - Reports 17550, The World Bank Group.
    7. Lorena Lombardozzi, 2019. "Can distortions in agriculture support structural transformation? The case of Uzbekistan," Post-Communist Economies, Taylor & Francis Journals, vol. 31(1), pages 52-74, January.
    8. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    9. Donna Mitchell & Ryan B. Williams & Darren Hudson & Phillip Johnson, 2017. "A Monte Carlo analysis on the impact of climate change on future crop choice and water use in Uzbekistan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 697-709, August.
    10. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iroda Rustamova & Abdulla Primov & Aziz Karimov & Botir Khaitov & Akmal Karimov, 2023. "Crop Diversification in the Aral Sea Region: Long-Term Situation Analysis," Sustainability, MDPI, vol. 15(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    2. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    3. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    4. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    8. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    9. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Lin Fang & Fengping Wu & Yantuan Yu & Lin Zhang, 2020. "Irrigation technology and water rebound in China's agricultural sector," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1088-1100, October.
    12. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Songjun Han & Di Xu & Zhiyong Yang, 2017. "Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    14. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    15. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    16. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.
    17. Wang, Yanyun & Long, Aihua & Xiang, Liyun & Deng, Xiaoya & Zhang, Pei & Hai, Yang & Wang, Jie & Li, Yang, 2020. "The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on Water footprint," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Borrego-Marín, María M. & Berbel, J., 2019. "Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin," Agricultural Water Management, Elsevier, vol. 212(C), pages 416-423.
    19. Julio Berbel & Alfonso Expósito & Carlos Gutiérrez-Martín & Luciano Mateos, 2019. "Effects of the Irrigation Modernization in Spain 2002–2015," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1835-1849, March.
    20. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8375-:d:858559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.