IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v304y2024ics0378377424004220.html
   My bibliography  Save this article

Agricultural water rebound effect and its driving factors in Xinjiang, China

Author

Listed:
  • Pei, Dongjie
  • Wen, Yue
  • Li, Wenhao
  • Ma, Zhanli
  • Guo, Li
  • Zhang, Jinzhu
  • Liu, Mengjie
  • Mu, Xiaoguo
  • Wang, Zhenhua

Abstract

The urgent need to reduce agricultural water consumption and tackle water scarcity has made developing water-saving technologies in agriculture a top priority. However, However, introducing these technologies does not automatically guarantee a reduction in overall water consumption within the sector. The rebound effect plays a significant role in limiting the effectiveness of water conservation policies. A comprehensive understanding of irrigation's water rebound effect (WRE) is essential for successfully conserving agricultural water resources, especially in arid regions. This study focuses on Xinjiang and empirically analyzes the rebound effect following the implementation of water-saving measures. This study focuses on Xinjiang and empirically analyzes the rebound effect following the implementation of water-saving measures. The findings indicate that from 2001 to 2020, water consumption remained a concern despite advancements in irrigation technology, leading to a 40.86 % reduction in the irrigation quota (a decrease of 5567.12 m³/ha). The cultivated land area, irrigation area, water-saving irrigation area, agricultural output value, agricultural water consumption, and agricultural water use productivity in Xinjiang have increased by 2.86 × 106 ha, 1.40 × 106 ha, 1.70 × 106 ha, 81.61 × 109 CNY, 6.28 × 109 m3 and 1.57 CNY/m3, respectively, with growth rates of 83.54 %, 41.27 %, 134.24 %, 217.87, 7.80 % and 192.83 %, respectively. Despite the reduced water allocation per hectare for irrigation, the anticipated decline in total water consumption did not occur, revealing a significant rebound effect, with variations ranging from 64.84 % to 1972.51 %. This indicates that a single water-saving measure may not ensure long-term water conservation. A deeper analysis of this rebound effect can help formulate more effective water management strategies. Strategies should encompass promoting ongoing advancements in water-saving technologies, imposing restrictions on expanding the cultivated land in certain areas, decreasing the cultivation of high-yield and high-water-demand crops, curbing the extension of irrigation coverage, enhancing the establishment of agricultural water pricing mechanisms, integrating smart irrigation technologies and data-driven water resource management, enhancing the utilization of saline-alkaline water, and driving policy innovation. The findings can help enhance agricultural water use efficiency, supporting agricultural production and regional economic development. This not only aids in improving agricultural water management in Xinjiang but also provides valuable insights for other arid and semi-arid regions. These insights can aid in creating more efficient water resource management strategies, reducing the negative impacts of the WRE, and advancing global agricultural sustainability and innovation in water management.

Suggested Citation

  • Pei, Dongjie & Wen, Yue & Li, Wenhao & Ma, Zhanli & Guo, Li & Zhang, Jinzhu & Liu, Mengjie & Mu, Xiaoguo & Wang, Zhenhua, 2024. "Agricultural water rebound effect and its driving factors in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004220
    DOI: 10.1016/j.agwat.2024.109086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & Lei, Yuxin & Nie, Tong & Li, Lichan, 2023. "Spatial scale effect of irrigation efficiency paradox based on water accounting framework in Heihe River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    6. Wang, Yanyun & Long, Aihua & Xiang, Liyun & Deng, Xiaoya & Zhang, Pei & Hai, Yang & Wang, Jie & Li, Yang, 2020. "The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on Water footprint," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    8. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    9. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    10. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    11. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    12. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    13. Fang, Lin & Zhang, Lin, 2020. "Does the trading of water rights encourage technology improvement and agricultural water conservation?," Agricultural Water Management, Elsevier, vol. 233(C).
    14. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    15. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    16. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    17. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    18. Haoyang Li & Jinhua Zhao, 2018. "Rebound Effects of New Irrigation Technologies: The Role of Water Rights," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 786-808.
    19. Neal Hughes & Manannan Donoghoe & Linden Whittle, 2020. "Farm Level Effects of On‐Farm Irrigation Infrastructure Programs in the Southern Murray–Darling Basin," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 53(4), pages 494-516, December.
    20. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    21. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    22. Macarena Dagnino & Frank Ward, 2012. "Economics of Agricultural Water Conservation: Empirical Analysis and Policy Implications," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 28(4), pages 577-600.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    3. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    4. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    5. Wang, Yanyun & Long, Aihua & Xiang, Liyun & Deng, Xiaoya & Zhang, Pei & Hai, Yang & Wang, Jie & Li, Yang, 2020. "The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on Water footprint," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Donglan Zha & Qian Chen & Jaume Freire González, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    7. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    8. Julio Berbel & Alfonso Expósito & Carlos Gutiérrez-Martín & Luciano Mateos, 2019. "Effects of the Irrigation Modernization in Spain 2002–2015," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1835-1849, March.
    9. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    10. Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    11. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    12. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    13. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    14. Godinot, Olivier & Jouan, Julia & Nesme, Thomas & Carof, Matthieu, 2024. "Evidence of a rebound effect in agriculture: Crop-livestock reconnection beyond the farm gate does not always lead to more sustainable nitrogen management," Agricultural Systems, Elsevier, vol. 221(C).
    15. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Pronti, A. & Zegarra, E. & Vicario, D. Rey & Graves, A., 2024. "Global exports draining local water resources: Land concentration, food exports and water grabbing in the Ica Valley (Peru)," World Development, Elsevier, vol. 177(C).
    17. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    18. Singh, Gurpreet & Gandhi, Vasant P. & Jain, Dinesh, 2024. "Micro-irrigation adoption and the Jevons’ Paradox: A study from four states of India," Agricultural Water Management, Elsevier, vol. 303(C).
    19. Drew, Mark & Crase, Lin, 2023. "‘More Crop per Drop’ and water use efficiency in the National Water Policy of Pakistan," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.