IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7635-d1731537.html
   My bibliography  Save this article

Spatial Evolution of Green Total Factor Carbon Productivity in the Transportation Sector and Its Energy-Driven Mechanisms

Author

Listed:
  • Yanming Sun

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
    International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)

  • Jiale Liu

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China)

  • Qingli Li

    (International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)

Abstract

Achieving carbon reduction is essential in advancing China’s dual carbon goals and promoting a green transformation in the transportation sector. Changes in energy structure and intensity constitute key drivers for sustainable and low-carbon development in this field. To explore the spatial spillover effects of the energy structure and intensity on the green transition of transportation, this study constructs a panel dataset of 30 Chinese provinces from 2007 to 2020. It employs a super-efficiency SBM model, non-parametric kernel density estimation, and a spatial Markov chain to verify and quantify the spatial spillover effects of green total factor productivity (GTFP) in the transportation sector. A dynamic spatial Durbin model is then used for empirical estimation. The main findings are as follows: (1) GTFP in China’s transportation sector exhibits a distinct spatial pattern of “high in the east, low in the west”, with an evident path dependence and structural divergence in its evolution; (2) GTFP displays spatial clustering characteristics, with “high–high” and “low–low” agglomeration patterns, and the spatial Markov chain confirms that the GTFP levels of neighboring regions significantly influence local transitions; (3) the optimization of the energy structure significantly promotes both local and neighboring GTFP in the short term, although the effect weakens over the long term; (4) a reduction in energy intensity also exerts a significant positive effect on GTFP, but with clear regional heterogeneity: the effects are more pronounced in the eastern and central regions, whereas the western and northeastern regions face risks of negative spillovers. Drawing on the empirical findings, several policy recommendations are proposed, including implementing regionally differentiated strategies for energy structure adjustment, enhancing transportation’s energy efficiency, strengthening cross-regional policy coordination, and establishing green development incentive mechanisms, with the aim of supporting the green and low-carbon transformation of the transportation sector both theoretically and practically.

Suggested Citation

  • Yanming Sun & Jiale Liu & Qingli Li, 2025. "Spatial Evolution of Green Total Factor Carbon Productivity in the Transportation Sector and Its Energy-Driven Mechanisms," Sustainability, MDPI, vol. 17(17), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7635-:d:1731537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weijun He & Yizhan Li & Xu Meng & Mengfei Song & Thomas Stephen Ramsey & Min An, 2024. "Will green technological progress help industrial collaborative agglomeration increase regional carbon productivity: evidence from Yangtze River Delta urban agglomerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26019-26046, October.
    2. Xueping Wu & Ming Gao & Shihong Guo & Wei Li, 2019. "Effects of environmental regulation on air pollution control in China: a spatial Durbin econometric analysis," Journal of Regulatory Economics, Springer, vol. 55(3), pages 307-333, June.
    3. Ge, Tao & Ding, Ziqi & Lu, Xiaoya & Yang, Keling, 2023. "Spillover effect of energy intensity targets on renewable energy consumption in China: A spatial econometric approach," Renewable Energy, Elsevier, vol. 217(C).
    4. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    5. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    6. Meiru Jiang & Jiachen Li, 2022. "Study on the Change in the Total Factor Carbon Emission Efficiency of China’s Transportation Industry and Its Influencing Factors," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    8. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    10. Lingqian Kong & Xinyi Jin & Yihua Xu & Kai Xu, 2025. "The impact of China’s total carbon emission control policy on low carbon total factor productivity," Industry and Innovation, Taylor & Francis Journals, vol. 32(4), pages 449-475, April.
    11. Wang, Linhui & Wang, Hui & Cao, Zhanglu & He, Yongda & Dong, Zhiqing & Wang, Shixiang, 2022. "Can industrial intellectualization reduce carbon emissions? — Empirical evidence from the perspective of carbon total factor productivity in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Yumeng Gu & Chunjie Qi & Fuxing Liu & Quanyong Lei & Yuchao Ding, 2023. "Spatiotemporal Evolution and Spatial Convergence Analysis of Total Factor Productivity of Citrus in China," Agriculture, MDPI, vol. 13(6), pages 1-14, June.
    13. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    14. Xin Zhang & Feng Xu, 2023. "Environmental Regulation and Spatial Spillover Effect of Green Technology Innovation: An Empirical Study on the Spatial Durbin Model," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    15. Fan Yin & Yongsheng Qian & Junwei Zeng & Xu Wei, 2024. "The Spatial Spillover Effects of Transportation Infrastructure on Regional Economic Growth—An Empirical Study at the Provincial Level in China," Sustainability, MDPI, vol. 16(19), pages 1-23, October.
    16. Ying Yu & Qian Zhang & Fan Song, 2023. "Non-Linear Impacts and Spatial Spillover of Digital Finance on Green Total Factor Productivity: An Empirical Study of Smart Cities in China," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    17. Yanming Sun & Baozhong Chen & Qingli Li, 2024. "Impact of Urban Form in the Yangtze River Delta of China on the Spatiotemporal Evolution of Carbon Emissions from Transportation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    18. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    19. Fakhri Hasanov & Rashid Sbia & Dimitrios Papadas & Ioannis Kostakis, 2024. "The consumption-based carbon emissions effects of renewable energy and total factor productivity: The evidence from natural gas exporters," Post-Print hal-04888689, HAL.
    20. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    3. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    4. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    5. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    6. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    7. Presno, María José & Landajo, Manuel & Fernández González, Paula, 2018. "Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis," Energy Economics, Elsevier, vol. 70(C), pages 563-581.
    8. Zhao, Xueting & Burnett, J. Wesley & Lacombe, Donald J., 2014. "Province-level Convergence of China CO2 Emission Intensity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169403, Agricultural and Applied Economics Association.
    9. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(6), pages 699-724, December.
    10. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    11. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    12. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    13. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    14. Vaona, Andrea, 2013. "The sclerosis of regional electricity intensities in Italy: An aggregate and sectoral analysis," Applied Energy, Elsevier, vol. 104(C), pages 880-889.
    15. Luis A. Gil-Alana & Juncal Cunado & Rangan Gupta, 2017. "Persistence, Mean-Reversion and Non-linearities in $$\hbox {CO2}$$ CO2 Emissions: Evidence from the BRICS and G7 Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 869-883, August.
    16. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.
    17. Wanbei Jiang & Weidong Liu, 2020. "Provincial-Level CO 2 Emissions Intensity Inequality in China: Regional Source and Explanatory Factors of Interregional and Intraregional Inequalities," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    18. Christidou, Maria & Panagiotidis, Theodore & Sharma, Abhijit, 2013. "On the stationarity of per capita carbon dioxide emissions over a century," Economic Modelling, Elsevier, vol. 33(C), pages 918-925.
    19. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    20. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7635-:d:1731537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.