Author
Listed:
- Yanming Sun
(School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)
- Jiale Liu
(School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China)
- Qingli Li
(International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)
Abstract
Achieving carbon reduction is essential in advancing China’s dual carbon goals and promoting a green transformation in the transportation sector. Changes in energy structure and intensity constitute key drivers for sustainable and low-carbon development in this field. To explore the spatial spillover effects of the energy structure and intensity on the green transition of transportation, this study constructs a panel dataset of 30 Chinese provinces from 2007 to 2020. It employs a super-efficiency SBM model, non-parametric kernel density estimation, and a spatial Markov chain to verify and quantify the spatial spillover effects of green total factor productivity (GTFP) in the transportation sector. A dynamic spatial Durbin model is then used for empirical estimation. The main findings are as follows: (1) GTFP in China’s transportation sector exhibits a distinct spatial pattern of “high in the east, low in the west”, with an evident path dependence and structural divergence in its evolution; (2) GTFP displays spatial clustering characteristics, with “high–high” and “low–low” agglomeration patterns, and the spatial Markov chain confirms that the GTFP levels of neighboring regions significantly influence local transitions; (3) the optimization of the energy structure significantly promotes both local and neighboring GTFP in the short term, although the effect weakens over the long term; (4) a reduction in energy intensity also exerts a significant positive effect on GTFP, but with clear regional heterogeneity: the effects are more pronounced in the eastern and central regions, whereas the western and northeastern regions face risks of negative spillovers. Drawing on the empirical findings, several policy recommendations are proposed, including implementing regionally differentiated strategies for energy structure adjustment, enhancing transportation’s energy efficiency, strengthening cross-regional policy coordination, and establishing green development incentive mechanisms, with the aim of supporting the green and low-carbon transformation of the transportation sector both theoretically and practically.
Suggested Citation
Yanming Sun & Jiale Liu & Qingli Li, 2025.
"Spatial Evolution of Green Total Factor Carbon Productivity in the Transportation Sector and Its Energy-Driven Mechanisms,"
Sustainability, MDPI, vol. 17(17), pages 1-24, August.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:17:p:7635-:d:1731537
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7635-:d:1731537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.