IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13985-d955035.html
   My bibliography  Save this article

Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port

Author

Listed:
  • Truong Ngoc Cuong

    (Department of Logistics, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Sam-Sang You

    (Division of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Le Ngoc Bao Long

    (Department of Logistics, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Hwan-Seong Kim

    (Department of Logistics, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

The global nature of seaport operations makes shipping companies susceptible to potential impacts. Sustainability requires seaport authorities to understand the underlying mechanisms of resilience in a dynamic world, to ensure high performance under disruptions. This paper deals with data analytics for analysing port resilience and a new paradigm for productivity forecasting that utilize a hybrid deep learning method. Nonlinear analytical methods include Lyapunov exponent, entropy analysis, Hurst exponent, and historical event analysis, with statistical significance tests. These approaches have been utilised to show that throughput demand at Busan port (South Korea) exhibits complex behaviour due to business volatility. A new forecasting method based on long short-term memory (LSTM) and random forest (RF) has been applied to explore port throughput in realizing recovery policy. The LSTM networks have shown high effectiveness in time-series forecasting tasks; RF is proposed as a complementary method to mitigate residual errors from the LSTM scheme. Statistical significance tests have been conducted to comprehensively evaluate the introduced forecasting models. The results show that the hybrid method outperformed three benchmarked models in both the short- and long-term forecasting at a 95% confidence level, guaranteeing accuracy and robustness as well as suitability. As a seeking strategy for seaport competitiveness, novel resilience planning incorporates sustainability to prepare for disruptions such as a global pandemic.

Suggested Citation

  • Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13985-:d:955035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zunfang Liu & Haochuan Lei & Lei Lei & Haiyan Sheng, 2022. "Spatial Prediction of Total Nitrogen in Soil Surface Layer Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    2. Cheng-Hong Yang & Po-Yin Chang, 2020. "Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    3. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    4. Poonam Pawar & Bharati Ainapure & Mamoon Rashid & Nazir Ahmad & Aziz Alotaibi & Sultan S. Alshamrani, 2022. "Deep Learning Approach for the Detection of Noise Type in Ancient Images," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    5. Baird, A., 1999. "Analysis of private seaport development: the port of Felixstowe," Transport Policy, Elsevier, vol. 6(2), pages 109-122, April.
    6. Zhang, Wei & Lam, Jasmine Siu Lee, 2017. "An empirical analysis of maritime cluster evolution from the port development perspective – Cases of London and Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 219-232.
    7. Marzieh Nazemzadeh & Thierry Vanelslander, 2015. "The container transport system: Selection criteria and business attractiveness for North-European ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 17(2), pages 221-245, June.
    8. Theo Notteboom & Thanos Pallis & Jean-Paul Rodrigue, 2021. "Disruptions and resilience in global container shipping and ports: the COVID-19 pandemic versus the 2008–2009 financial crisis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 179-210, June.
    9. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    10. Marco Corazza & A. G. Malliaris, 2005. "Multi-Fractality in Foreign Currency Markets," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 11, pages 151-184, World Scientific Publishing Co. Pte. Ltd..
    11. Jasmine Siu Lee Lam & Theo Notteboom, 2014. "The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 169-189, March.
    12. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    13. Michael Fusillo & Hercules Haralambides, 2020. "Do carrier expectations indicate industry structure in container shipping? An econometric analysis," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-16, December.
    14. Hwarng, H. Brian & Xie, Na, 2008. "Understanding supply chain dynamics: A chaos perspective," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1163-1178, February.
    15. Marasco, Addolorata & Romano, Alessandro, 2018. "Inter-port interactions in the Le Havre-Hamburg range: A scenario analysis using a nonautonomous Lotka Volterra model," Journal of Transport Geography, Elsevier, vol. 69(C), pages 207-220.
    16. Ng, Adolf K.Y. & Liu, John J., 2010. "The port and maritime industries in the post-2008 world: Challenges and opportunities," Research in Transportation Economics, Elsevier, vol. 27(1), pages 1-3.
    17. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Peter Schulze & Alexander Prinz, 2009. "Forecasting container transshipment in Germany," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2809-2815.
    20. Xiaolong Ma & Qiang Yu & Jianbei Liu, 2022. "Modeling Urban Freeway Rear-End Collision Risk Using Machine Learning Algorithms," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    21. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    22. M. Milenković & N. Milosavljevic & N. Bojović & S. Val, 2021. "Container flow forecasting through neural networks based on metaheuristics," Operational Research, Springer, vol. 21(2), pages 965-997, June.
    23. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    24. repec:hal:journl:halshs-01145657 is not listed on IDEAS
    25. Odey Alshboul & Ali Shehadeh & Rabia Emhamed Al Mamlook & Ghassan Almasabha & Ali Saeed Almuflih & Saleh Y. Alghamdi, 2022. "Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhao Jiang & Yi Zuo, 2023. "Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model," Sustainability, MDPI, vol. 15(9), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
    2. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    3. Truong Ngoc Cuong & Hwan-Seong Kim & Le Ngoc Bao Long & Sam-Sang You, 2024. "Seaport profit analysis and efficient management strategies under stochastic disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 212-240, June.
    4. Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    5. Jakub Micha'nk'ow & {L}ukasz Kwiatkowski & Janusz Morajda, 2023. "Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting," Papers 2310.01063, arXiv.org.
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    8. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    9. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    12. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    13. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    14. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    15. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    18. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    19. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    20. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13985-:d:955035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.