IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4235-d533878.html
   My bibliography  Save this article

Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone

Author

Listed:
  • Silvia Saravia-Matus

    (Natural Resources Division, United Nations Economic Commission for Latin America and the Caribbean (UN ECLAC), Vitacura, 3477 Santiago, Chile)

  • T. S. Amjath-Babu

    (International Maize and Wheat Improvement Center (CIMMYT), Dhaka 1212, Bangladesh)

  • Sreejith Aravindakshan

    (International Maize and Wheat Improvement Center (CIMMYT), Dhaka 1212, Bangladesh
    Farming Systems Ecology, Wageningen University and Research (WUR), 6708 PB Wageningen, The Netherlands)

  • Stefan Sieber

    (Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Muencheberg, Germany
    Thaer-Institute of Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany)

  • Jimmy A. Saravia

    (Center for Research in Economics and Finance (CIEF) and Grupo de Investigación en Banca y Finanzas, School of Economics and Finance, Universidad EAFIT, 050022 Medellín, Colombia)

  • Sergio Gomez y Paloma

    (Joint Research Center, European Commission, 41092 Seville, Spain)

Abstract

By developing meta-frontier efficiency and structural equation models, the paper examines whether farm economic viability is positively associated with technical efficiency in a highly food insecure context, such as that of rural Sierra Leone. The findings show that technical efficiency can be a sufficient but not necessary condition in determining economic viability of smallholder farming. It is possible to breach reproductive thresholds at the cost of reduced technical efficiency, when the crop diversification strategy of smallholders includes market-oriented high-value crops. This calls for a dual policy approach that addresses farmers’ internal needs for self-consumption (increasing efficiency of food crop production) while encouraging market-oriented cash crop production (diversification assisted through the reduction of associated transaction costs and the establishment of accessible commercialization channels of export related crops and/or high-value crops). The work also calls out for a move-up or move-out strategy for small holders to create viable farming systems in developing world.

Suggested Citation

  • Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4235-:d:533878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehui, Simeon K. & Spencer, Dunstan S. C., 1993. "Measuring the sustainability and economic viability of tropical farming systems: a model from sub-Saharan Africa," Agricultural Economics, Blackwell, vol. 9(4), pages 279-296, December.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    4. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    5. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    6. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    7. Govereh, Jones & Jayne, T. S., 2003. "Cash cropping and food crop productivity: synergies or trade-offs?," Agricultural Economics, Blackwell, vol. 28(1), pages 39-50, January.
    8. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    9. Olesen, O. B. & Petersen, N. C., 1995. "Incorporating quality into data envelopment analysis: a stochastic dominance approach," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 117-135, April.
    10. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    11. Aravindakshan, Sreejith & Krupnik, Timothy J. & Amjath-Babu, T.S. & Speelman, Stijn & Tur-Cardona, Juan & Tittonell, Pablo & Groot, Jeroen C.J., 2021. "Quantifying farmers' preferences for cropping systems intensification: A choice experiment approach applied in coastal Bangladesh's risk prone farming systems," Agricultural Systems, Elsevier, vol. 189(C).
    12. Simeon K. Ehui & Dunstan S.C. Spencer, 1993. "Measuring the sustainability and economic viability of tropical farming systems: a model from sub‐Saharan Africa," Agricultural Economics, International Association of Agricultural Economists, vol. 9(4), pages 279-296, December.
    13. Amjath-Babu, T.S. & Krupnik, Timothy J. & Kaechele, Harald & Aravindakshan, Sreejith & Sietz, Diana, 2016. "Transitioning to groundwater irrigated intensified agriculture in Sub-Saharan Africa: An indicator based assessment," Agricultural Water Management, Elsevier, vol. 168(C), pages 125-135.
    14. Aravindakshan, Sreejith & Krupnik, Timothy J. & Groot, Jeroen C.J. & Speelman, Erika N. & Amjath- Babu, T.S. & Tittonell, Pablo, 2020. "Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh," Agricultural Systems, Elsevier, vol. 177(C).
    15. Saravia Matus, Silvia L. & Gomez y Paloma, Sergio, 2014. "Farm viability of (semi)subsistence smallholders in Sierra Leone," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 9(3), pages 1-18, August.
    16. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    17. Sergio Gomez y Paloma & Laura Riesgo & Kamel Elouhichi Louhichi, 2020. "The Role of Smallholder Farms in Food and Nutrition Security [Le rôle des petites exploitations agricoles dans la sécurité alimentaire et nutritionnelle]," Post-Print hal-02611174, HAL.
    18. Wossink, Ada & Denaux, Zulal S., 2006. "Environmental and cost efficiency of pesticide use in transgenic and conventional cotton production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 312-328, October.
    19. Antonio Galiano-Garrigós & Ángel González-Avilés & Carlos Rizo-Maestre & MªDolores Andújar-Montoya, 2019. "Energy Efficiency and Economic Viability as Decision Factors in the Rehabilitation of Historic Buildings," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
    20. Sergio Gomez y Paloma & Laura Riesgo & Kamel Louhichi (ed.), 2020. "The Role of Smallholder Farms in Food and Nutrition Security," Springer Books, Springer, number 978-3-030-42148-9, December.
    21. Ofori-Bah, Adeline & Asafu-Adjaye, John, 2011. "Scope economies and technical efficiency of cocoa agroforesty systems in Ghana," Ecological Economics, Elsevier, vol. 70(8), pages 1508-1518, June.
    22. Adele Coppola & Alfonso Scardera & Mario Amato & Fabio Verneau, 2020. "Income Levels and Farm Economic Viability in Italian Farms: An Analysis of FADN Data," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    23. Sreejith Aravindakshan & Frederick Rossi & T. S. Amjath-Babu & Prakashan Chellattan Veettil & Timothy J. Krupnik, 2018. "Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia," Journal of Productivity Analysis, Springer, vol. 49(2), pages 153-171, June.
    24. H. David Sherman & Joe Zhu, 2006. "Service Productivity Management," Springer Books, Springer, number 978-0-387-33231-4, December.
    25. Theodore W. Schultz, 1964. "Changing Relevance of Agricultural Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 46(5), pages 1004-1014.
    26. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    27. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    28. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
    29. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    30. repec:ipt:iptwpa:jrc68518 is not listed on IDEAS
    31. Collier, Paul & Dercon, Stefan, 2014. "African Agriculture in 50Years: Smallholders in a Rapidly Changing World?," World Development, Elsevier, vol. 63(C), pages 92-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrik Št’astný & Peter Makýš & Ivan Vavrík & Daniel Kalús, 2023. "Implementing the Technologies of Additional Impermeable Layers in a Building of the Monuments Office (Káčerov Majer) from a Sustainability Point of View," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreejith Aravindakshan & Frederick Rossi & T. S. Amjath-Babu & Prakashan Chellattan Veettil & Timothy J. Krupnik, 2018. "Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia," Journal of Productivity Analysis, Springer, vol. 49(2), pages 153-171, June.
    2. Juan Piedra-Peña & Diego Prior, 2023. "Analyzing the effect of health reforms on the efficiency of Ecuadorian public hospitals," International Journal of Health Economics and Management, Springer, vol. 23(3), pages 361-392, September.
    3. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    4. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    5. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    6. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2017. "Assessing the financial and outreach efficiency of microfinance institutions: Do age and size matter?," Journal of Multinational Financial Management, Elsevier, vol. 40(C), pages 63-76.
    7. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    8. Kenichi Kashiwagi & Hajime Kamiyama, 2023. "Effect of adoption of organic farming on technical efficiency of olive-growing farms: empirical evidence from West Bank of Palestine," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-28, December.
    9. Ma, Zhanxin & See, Kok Fong & Yu, Ming-Miin & Zhao, Chunying, 2021. "Research efficiency analysis of China's university faculty members: A modified meta-frontier DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    10. Andreas Eder & Bernhard Mahlberg & Bernhard Stürmer, 2021. "Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 37-63, February.
    11. Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    12. Walheer, Barnabé, 2023. "Meta-frontier and technology switchers: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 463-474.
    13. Silva, Haroldo José Torres da & Marques, Pedro Valentim, 2021. "Heterogeneity in the productivity of sugar-energy mills in Brazil," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(3), February.
    14. Victoria Wojcik & Harald Dyckhoff & Marcel Clermont, 2019. "Is data envelopment analysis a suitable tool for performance measurement and benchmarking in non-production contexts?," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 559-595, December.
    15. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    16. Akbari, Negar & Jones, Dylan & Treloar, Richard, 2020. "A cross-European efficiency assessment of offshore wind farms: A DEA approach," Renewable Energy, Elsevier, vol. 151(C), pages 1186-1195.
    17. Victor V. Podinovski & Tatiana Bouzdine-Chameeva, 2021. "Optimal solutions of multiplier DEA models," Journal of Productivity Analysis, Springer, vol. 56(1), pages 45-68, August.
    18. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    19. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    20. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4235-:d:533878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.