IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4946-d265981.html
   My bibliography  Save this article

Energy Efficiency and Economic Viability as Decision Factors in the Rehabilitation of Historic Buildings

Author

Listed:
  • Antonio Galiano-Garrigós

    (Department of Architectural Constructions, University of Alicante, 03690 Alicante, Spain)

  • Ángel González-Avilés

    (Department of Architectural Constructions, University of Alicante, 03690 Alicante, Spain)

  • Carlos Rizo-Maestre

    (Department of Architectural Constructions, University of Alicante, 03690 Alicante, Spain)

  • MªDolores Andújar-Montoya

    (Building Sciences and Urbanism Department, University of Alicante, 03690 Alicante, Spain)

Abstract

The restoration of historical buildings often implies a change in the main use of the building so that it can once again become a part of people’s lives. Among the interventions needed to adapt the buildings to their new purpose, improving the energy performance is always a challenge due to their particular construction solutions and the influence that these improvements can have on their protected elements. The regulations in force in European Union (EU) member states leave a gap in how the energy performance evaluations in these types of buildings can be defined, and even exclude them from the process. However, rehabilitation of buildings is always seen as an opportunity, because it allows the building to once again be useful to society and play an important role in people’s lives. At the same time, it can also improve their performance and allow benefits to be gained from their use through a reduction in maintenance costs. In the rehabilitation process, the economic viability of the renovation plays a fundamental role which must be compared, in the case of protected buildings, to its impact on the architecture of the building. Since 2002, the EU has issued directives with the aim that countries should define objective methods to improve the energy performance of buildings and, in recent times, methods that demonstrate the amortization of such improvements. Within the process of implementing the new methodologies adapted to the EPBD, Spain was one of the last EU countries to define a process for the energy assessment of existing buildings, introducing an analysis of the economic viability of the construction improvements suggested in the process. The objective of this research was to describe the decision-making process during the evaluation of the feasibility of introducing construction improvements to the energy performance of two catalogued historic buildings located in a warm climate. The estimated energy consumption was evaluated, the net present value (NPV) and the payback period of the investment calculated, and the results obtained were compared with the real energy consumption. At the end of the process, it can be said that the methodologies adopted in Spain offer results that can lead designers to make wrong decisions that may affect the protected heritage values of these buildings.

Suggested Citation

  • Antonio Galiano-Garrigós & Ángel González-Avilés & Carlos Rizo-Maestre & MªDolores Andújar-Montoya, 2019. "Energy Efficiency and Economic Viability as Decision Factors in the Rehabilitation of Historic Buildings," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4946-:d:265981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    2. Baek, Cheonghoon & Park, Sanghoon, 2012. "Policy measures to overcome barriers to energy renovation of existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3939-3947.
    3. Munarim, Ulisses & Ghisi, Enedir, 2016. "Environmental feasibility of heritage buildings rehabilitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 235-249.
    4. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joana Gonçalves & Ricardo Mateus & José Dinis Silvestre & Ana Pereira Roders, 2020. "Going beyond Good Intentions for the Sustainable Conservation of Built Heritage: A Systematic Literature Review," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    2. Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    3. Yohei Endo & Hideki Takamura, 2021. "Evaluation of Life-Cycle Assessment Analysis: Application to Restoration Projects and New Construction in Alpine Climate, Japan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Munarim, Ulisses & Ghisi, Enedir, 2016. "Environmental feasibility of heritage buildings rehabilitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 235-249.
    2. Yohei Endo & Hideki Takamura, 2021. "Evaluation of Life-Cycle Assessment Analysis: Application to Restoration Projects and New Construction in Alpine Climate, Japan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    3. Paolo La Greca & Giuseppe Margani, 2018. "Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Friege, Jonas & Chappin, Emile, 2014. "Modelling decisions on energy-efficient renovations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 196-208.
    5. Thibodeau, Charles & Bataille, Alain & Sié, Marion, 2019. "Building rehabilitation life cycle assessment methodology–state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 408-422.
    6. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    7. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    8. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    9. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    10. Shiyao Zhu & Dezhi Li & Haibo Feng & Tiantian Gu & Jiawei Zhu, 2019. "AHP-TOPSIS-Based Evaluation of the Relative Performance of Multiple Neighborhood Renewal Projects: A Case Study in Nanjing, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    11. Belotti, Alice, 2016. "Estate regeneration and community impacts: challenges and lessons for social landlords, developers and local councils," LSE Research Online Documents on Economics 121480, London School of Economics and Political Science, LSE Library.
    12. Fabrizio M. Amoruso & Min-Hee Sonn & Soyeon Chu & Thorsten Schuetze, 2021. "Sustainable Building Legislation and Incentives in Korea: A Case-Study-Based Comparison of Building New and Renovation," Sustainability, MDPI, vol. 13(9), pages 1-41, April.
    13. Hamza, Neveen & Gilroy, Rose, 2011. "The challenge to UK energy policy: An ageing population perspective on energy saving measures and consumption," Energy Policy, Elsevier, vol. 39(2), pages 782-789, February.
    14. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    15. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    16. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    17. Mária Moresová & Mariana Sedliačiková & Jarmila Schmidtová & Iveta Hajdúchová, 2020. "Green Development in the Construction of Family Houses in Urban and Rural Settlements in Slovakia," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    18. Geertje Bekebrede & Ellen Van Bueren & Ivo Wenzler, 2018. "Towards a Joint Local Energy Transition Process in Urban Districts: The GO2Zero Simulation Game," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    19. Deakin, Mark & Campbell, Fiona & Reid, Alasdair, 2012. "The mass-retrofitting of an energy efficient-low carbon zone: Baselining the urban regeneration strategy, vision, masterplan and redevelopment scheme," Energy Policy, Elsevier, vol. 45(C), pages 187-200.
    20. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4946-:d:265981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.