Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jacopo Barbieri & Fabio Parigi & Fabio Riva & Emanuela Colombo, 2018. "Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts," Energies, MDPI, vol. 11(12), pages 1-9, December.
- James K. Gitau & Cecilia Sundberg & Ruth Mendum & Jane Mutune & Mary Njenga, 2019. "Use of Biochar-Producing Gasifier Cookstove Improves Energy Use Efficiency and Indoor Air Quality in Rural Households," Energies, MDPI, vol. 12(22), pages 1-19, November.
- N. Panwar, 2009. "Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 627-633, October.
- Yixiang Zhang & Zongxi Zhang & Yuguang Zhou & Renjie Dong, 2018. "The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion," Energies, MDPI, vol. 11(5), pages 1-11, May.
- Gudina Terefe Tucho & Sanderine Nonhebel, 2015. "Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia," Energies, MDPI, vol. 8(9), pages 1-19, September.
- Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
- Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
- Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
- Elisabeth Dresen & Ben DeVries & Martin Herold & Louis Verchot & Robert Müller, 2014. "Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia," Land, MDPI, vol. 3(3), pages 1-21, September.
- N. Panwar & A. Kurchania & N. Rathore, 2009. "Mitigation of greenhouse gases by adoption of improved biomass cookstoves," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 569-578, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
- Alina E. Kozhukhova & Stephanus P. du Preez & Christiaan Martinson & Dmitri G. Bessarabov, 2025. "Development of Low-Emission Cooking Device Based on Catalytic Hydrogen Combustion Technology," Energies, MDPI, vol. 18(19), pages 1-21, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
- Arora, Pooja & Jain, Suresh, 2016. "A review of chronological development in cookstove assessment methods: Challenges and way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 203-220.
- Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
- Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
- Shengqiang Wei & Yiping Lu & Wei Yang & Yubin Ke & Haibiao Zheng & Lingbo Zhu & Jianfei Tong & Longwei Mei & Shinian Fu & Congju Yao, 2022. "Comparative Research on Ventilation Characteristics of Scattering and Sample Room from Chinese Spallation Neutron Source," Energies, MDPI, vol. 15(11), pages 1-16, May.
- D'Agostino, Anthony L. & Urpelainen, Johannes & Xu, Alice, 2015. "Socio-economic determinants of charcoal expenditures in Tanzania: Evidence from panel data," Energy Economics, Elsevier, vol. 49(C), pages 472-481.
- Simons, Andrew M. & Beltramo, Theresa & Blalock, Garrick & Levine, David I., 2017.
"Using unobtrusive sensors to measure and minimize Hawthorne effects: Evidence from cookstoves,"
Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 68-80.
- Simons, Andrew M. & Beltramo, Theresa & Blalock, Garrick & Levine, David I., "undated". "Using Unobtrusive Sensors to Measure and Minimize Hawthorne Effects: Evidence from Cookstoves," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258029, Agricultural and Applied Economics Association.
- Simons, Andrew M. & Beltramo, Theresa & Blalock, Garrick & Levine, David I., 2016. "Using Unobtrusive Sensors to Measure and Minimize Hawthorne Effects: Evidence from Cookstoves," Working Papers 250030, Cornell University, Department of Applied Economics and Management.
- Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
- Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
- Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Harry Hoffmann & Götz Uckert & Constance Rybak & Frieder Graef & Klas Sander & Stefan Sieber, 2018. "Efficiency scenarios of charcoal production and consumption – a village case study from Western Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 925-938, August.
- Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
- Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
- Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
- Smith, Jo U. & Fischer, Anke & Hallett, Paul D. & Homans, Hilary Y. & Smith, Pete & Abdul-Salam, Yakubu & Emmerling, Hanna H. & Phimister, Euan, 2015. "Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 903-917.
- Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
- Raman, P. & Ram, N.K. & Murali, J., 2014. "Improved test method for evaluation of bio-mass cook-stoves," Energy, Elsevier, vol. 71(C), pages 479-495.
- Lee, Jaehyung & Jang, Heesun, 2022. "A real options study on cook stove CDM project under emission allowance price uncertainty," Journal of Asian Economics, Elsevier, vol. 80(C).
- Kursun, Berrin & Bakshi, Bhavik R. & Mahata, Manoj & Martin, Jay F., 2015. "Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options," Ecological Modelling, Elsevier, vol. 305(C), pages 40-53.
- Hussein M. K. Al-Masri & Abed A. Al-Sharqi & Sharaf K. Magableh & Ali Q. Al-Shetwi & Maher G. M. Abdolrasol & Taha Selim Ustun, 2022. "Optimal Allocation of a Hybrid Photovoltaic Biogas Energy System Using Multi-Objective Feasibility Enhanced Particle Swarm Algorithm," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7723-:d:415600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7723-d415600.html