IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1372-1381.html
   My bibliography  Save this article

Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal

Author

Listed:
  • Cheng, Shikun
  • Li, Zifu
  • Mang, Heinz-Peter
  • Neupane, Kalidas
  • Wauthelet, Marc
  • Huba, Elisabeth-Maria

Abstract

Biogas technology is becoming increasingly popular throughout the world, particularly in countries where governments promote domestic biogas systems. Despite its popularity, problems exist in biogas technology, such as low-quality construction, leakage of pipelines, low biogas production, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of small-sized biogas systems (SBS). This research applies the fault tree approach (FTA) to identify failures, and evaluate their effects on the operation of SBS from a technical point of view, based on a nationwide field study in Nepal. Ninety-four sets of SBS were selected and sampled in targeted areas. Five subsystems of SBS were defined, including structural components, biogas utilization equipment, piping system, biogas production, and effluent disposal system. Based on the statistical analysis of the 94 targeted cases, the fault probabilities of the five subsystems are 0.67, 0.48, 0.73, 0.26, and 0.64, respectively. The weights of five subsystems are determined by Delphi method and fault probability of SBS is calculated. The results show that faults on piping systems happen most frequently, and that proper disposal and reuse of bio-slurry are often neglected. Regardless of the social and economic benefits of SBS, implementation scenarios of SBS throughout Nepal are evaluated under a technical perspective, as follows: (1) the operational status of SBS is not optimal. (2) Based on criteria for failures, well-operation ratio is about 53% in practice. (3) Skilled masons are prerequisites for efficient functioning of SBS. (4) Maintenance plays a key role for efficient functioning. The study results prove that FTA is mostly suitable for SBS evaluation and is an effective analysis tool for technical evaluation in the field of biogas technology.

Suggested Citation

  • Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1372-1381
    DOI: 10.1016/j.apenergy.2013.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300696X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odlare, M. & Arthurson, V. & Pell, M. & Svensson, K. & Nehrenheim, E. & Abubaker, J., 2011. "Land application of organic waste - Effects on the soil ecosystem," Applied Energy, Elsevier, vol. 88(6), pages 2210-2218, June.
    2. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    3. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    4. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    5. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    6. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    7. Edwards, Rufus D. & Smith, Kirk R. & Zhang, Junfeng & Ma, Yuqing, 2004. "Implications of changes in household stoves and fuel use in China," Energy Policy, Elsevier, vol. 32(3), pages 395-411, February.
    8. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    9. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    10. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    11. Asif, Muhammad & Barua, Dipal, 2011. "Salient features of the Grameen Shakti renewable energy program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5063-5067.
    12. Sovacool, Benjamin K. & Drupady, Ira Martina, 2011. "Summoning earth and fire: The energy development implications of Grameen Shakti (GS) in Bangladesh," Energy, Elsevier, vol. 36(7), pages 4445-4459.
    13. Abdul Rahman, Fariz & Varuttamaseni, Athi & Kintner-Meyer, Michael & Lee, John C., 2013. "Application of fault tree analysis for customer reliability assessment of a distribution power system," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 76-85.
    14. van Groenendaal, Willem & Gehua, Wang, 2010. "Microanalysis of the benefits of China's family-size bio-digesters," Energy, Elsevier, vol. 35(11), pages 4457-4466.
    15. Gautam, Rajeeb & Baral, Sumit & Herat, Sunil, 2009. "Biogas as a sustainable energy source in Nepal: Present status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 248-252, January.
    16. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    17. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    18. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    19. Iniyan, S & Suganthi, L & Samuel, Anand A, 2001. "A survey of social acceptance in using renewable energy sources for the new millennium," Renewable Energy, Elsevier, vol. 24(3), pages 657-661.
    20. Mlaouhi, A. & Thayer, B.Ben & Kesraoui, R. & Depeyre, D., 1996. "Technical evaluation of rural biogas installations in Tunisia," Renewable Energy, Elsevier, vol. 9(1), pages 980-983.
    21. K.C., Surendra & Khanal, Samir Kumar & Shrestha, Prachand & Lamsal, Buddhi, 2011. "Current status of renewable energy in Nepal: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4107-4117.
    22. Yu, Liu & Yaoqiu, Kuang & Ningsheng, Huang & Zhifeng, Wu & Lianzhong, Xu, 2008. "Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation," Renewable Energy, Elsevier, vol. 33(9), pages 2027-2035.
    23. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    24. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    25. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    26. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    27. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    28. Gurung, Anup & Oh, Sang Eun, 2013. "Conversion of traditional biomass into modern bioenergy systems: A review in context to improve the energy situation in Nepal," Renewable Energy, Elsevier, vol. 50(C), pages 206-213.
    29. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    30. Shrimali, Gireesh & Slaski, Xander & Thurber, Mark C. & Zerriffi, Hisham, 2011. "Improved stoves in India: A study of sustainable business models," Energy Policy, Elsevier, vol. 39(12), pages 7543-7556.
    31. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    2. Islar, Mine & Brogaard, Sara & Lemberg-Pedersen, Martin, 2017. "Feasibility of energy justice: Exploring national and local efforts for energy development in Nepal," Energy Policy, Elsevier, vol. 105(C), pages 668-676.
    3. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "How effective are small-scale energy interventions in developing countries? Results from a post-evaluation on project-level," Applied Energy, Elsevier, vol. 135(C), pages 809-814.
    4. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    5. Lohani, Sunil Prasad & Pokhrel, Dhiraj & Bhattarai, Sankalpa & Pokhrel, Amod K., 2022. "Technical assessment of installed domestic biogas plants in Kavre, Nepal," Renewable Energy, Elsevier, vol. 181(C), pages 1250-1257.
    6. Casson Moreno, Valeria & Guglielmi, Daniele & Cozzani, Valerio, 2018. "Identification of critical safety barriers in biogas facilities," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 81-94.
    7. Phiona Jackline Mukisa & Chama Theodore Ketuama & Hynek Roubík, 2022. "Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood," Agriculture, MDPI, vol. 12(9), pages 1-10, September.
    8. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    9. Tafadzwa Clementine Maramura & Eugine Tafadzwa Maziriri & Tinashe Chuchu & David Mago & Rumbidzai Mazivisa, 2020. "Renewable Energy Access Challenge at Household Level for the Poor in Rural Zimbabwe: Is Biogas Energy a Remedy?," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 282-292.
    10. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2022. "Importance of Feedstock in a Small-Scale Agricultural Biogas Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.
    11. Garofalo, Pasquale & Mastrorilli, Marcello & Ventrella, Domenico & Vonella, Alessandro Vittorio & Campi, Pasquale, 2020. "Modelling the suitability of energy crops through a fuzzy-based system approach: The case of sugar beet in the bioethanol supply chain," Energy, Elsevier, vol. 196(C).
    12. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    13. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    14. Garofalo, Pasquale & Campi, Pasquale & Vonella, Alessandro Vittorio & Mastrorilli, Marcello, 2018. "Application of multi-metric analysis for the evaluation of energy performance and energy use efficiency of sweet sorghum in the bioethanol supply-chain: A fuzzy-based expert system approach," Applied Energy, Elsevier, vol. 220(C), pages 313-324.
    15. Siti Norasyiqin Abdul Latif & Meng Soon Chiong & Srithar Rajoo & Asako Takada & Yoon-Young Chun & Kiyotaka Tahara & Yasuyuki Ikegami, 2021. "The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix," Energies, MDPI, vol. 14(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    2. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    3. Raha, Debadayita & Mahanta, Pinakeswar & Clarke, Michèle L., 2014. "The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme," Energy Policy, Elsevier, vol. 68(C), pages 80-91.
    4. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    5. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    6. Khan, Ershad Ullah & Martin, Andrew R., 2015. "Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh," Energy, Elsevier, vol. 93(P1), pages 1116-1127.
    7. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    8. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    9. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    10. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    11. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria, 2013. "A review of prefabricated biogas digesters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 738-748.
    12. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    13. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    14. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    15. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    16. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    18. Coimbra-Araújo, Carlos H. & Mariane, Leidiane & Júnior, Cicero Bley & Frigo, Elisandro Pires & Frigo, Michelle Sato & Araújo, Izabela Regina Costa & Alves, Helton José, 2014. "Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 826-839.
    19. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    20. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1372-1381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.