IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p463-d310056.html
   My bibliography  Save this article

The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces

Author

Listed:
  • Andrzej Greinert

    (Department of Geoengineering and Reclamation, Institute of Environmental Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland)

  • Maria Mrówczyńska

    (Department of Construction Technology, Geotechnics and Geodesy, Institute of Civil Engineering, University of Zielona Gora, 65-516 Zielona Góra, Poland)

  • Radosław Grech

    (Centre of Renewable Energy Ltd. Co., University of Zielona Góra, 51A Armii Krajowej St., 66-100 Sulechów, Poland)

  • Wojciech Szefner

    (Lubuski Centre for Innovation and Agricultural Implementation Ltd. Co., University of Zielona Góra, Kalsk 122, 66-100 Sulechów, Poland)

Abstract

Biomass combustion is technologically difficult. It is also problematic because of the necessity to manage the ash that is generated in the process. The combustion of biomass pellets is optimum when their moisture is 6–8%. The calorific value of pellets made from straw and willow wood (4:1) was 17.3–20.1 MJ∙kg −1 . There were serious problems with burning this material caused by the accumulation and melting of bottom ash on the grate, which damaged the furnace. These problems with optimizing the biomass combustion process resulted in increased CO emissions into the atmosphere. It was shown that pelletization could also be used to consolidate the ash generated during the combustion process, which would eliminate secondary dust during transport to the utilization site. For this purpose, it was suggested to add binding substances such as bentonite and bran. The analysis showed that an optimum material for pelletization should contain, on average, 880 g of ash, 120 g of bentonite, 108 g of bran, and 130 g of water.

Suggested Citation

  • Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:463-:d:310056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Houshfar & Terese Løvås & Øyvind Skreiberg, 2012. "Experimental Investigation on NO x Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets," Energies, MDPI, vol. 5(2), pages 1-21, February.
    2. Blanca Antizar-Ladislao & Juan L. Turrion-Gomez, 2010. "Decentralized Energy from Waste Systems," Energies, MDPI, vol. 3(2), pages 1-12, January.
    3. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.
    4. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    5. Jie Xu & Shiyan Chang & Zhenhong Yuan & Yang Jiang & Shuna Liu & Weizhen Li & Longlong Ma, 2015. "Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China," Energies, MDPI, vol. 8(12), pages 1-18, December.
    6. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    7. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    8. Lara Febrero & Enrique Granada & Araceli Regueiro & José Luis Míguez, 2015. "Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler," Energies, MDPI, vol. 8(9), pages 1-23, September.
    9. Amanda D. Cuellar & Howard Herzog, 2015. "A Path Forward for Low Carbon Power from Biomass," Energies, MDPI, vol. 8(3), pages 1-15, February.
    10. Yixiang Zhang & Zongxi Zhang & Yuguang Zhou & Renjie Dong, 2018. "The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion," Energies, MDPI, vol. 11(5), pages 1-11, May.
    11. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    12. Xuexian Qin & Robert F. Keefe & Daren E. Daugaard, 2018. "Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine," Energies, MDPI, vol. 11(3), pages 1-14, March.
    13. Giuseppe Toscano & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2018. "Pelleting Vineyard Pruning at Low Cost with a Mobile Technology," Energies, MDPI, vol. 11(9), pages 1-17, September.
    14. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    15. Yuanyuan Shao & Jinsheng Wang & Fernando Preto & Jesse Zhu & Chunbao Xu, 2012. "Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation," Energies, MDPI, vol. 5(12), pages 1-19, December.
    16. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    17. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    18. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2012. "Portuguese pellets market: Analysis of the production and utilization constrains," Energy Policy, Elsevier, vol. 42(C), pages 129-135.
    19. Esperanza Monedero & Henar Portero & Magín Lapuerta, 2018. "Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency," Energies, MDPI, vol. 11(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suyitno & Heru Sutanto & Mohammad Muqoffa & Tito Gusti Nurrohim, 2022. "An Experimental and Numerical Study of the Burning of Calliandra Wood Pellets in a 200 kW Furnace," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    3. Michał Krzyżaniak & Mariusz J. Stolarski & Łukasz Graban & Waldemar Lajszner & Tomasz Kuriata, 2020. "Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy," Energies, MDPI, vol. 13(6), pages 1-8, March.
    4. Michał Kozioł & Joachim Kozioł, 2023. "Impact of Primary Air Separation in a Grate Furnace on the Resulting Combustion Products," Energies, MDPI, vol. 16(4), pages 1-16, February.
    5. Martin Lisý & Hana Lisá & David Jecha & Marek Baláš & Peter Križan, 2020. "Characteristic Properties of Alternative Biomass Fuels," Energies, MDPI, vol. 13(6), pages 1-17, March.
    6. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    7. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    8. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    9. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    10. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    11. Aleksandra Lubańska & Jan K. Kazak, 2023. "The Role of Biogas Production in Circular Economy Approach from the Perspective of Locality," Energies, MDPI, vol. 16(9), pages 1-15, April.
    12. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    13. Jiří Souček & Algirdas Jasinskas, 2020. "Assessment of the Use of Potatoes as a Binder in Flax Heating Pellets," Sustainability, MDPI, vol. 12(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    2. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    3. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    4. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    6. Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
    7. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    8. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    9. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    11. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    12. Lara Febrero & Enrique Granada & Araceli Regueiro & José Luis Míguez, 2015. "Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler," Energies, MDPI, vol. 8(9), pages 1-23, September.
    13. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    14. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    15. Araceli Regueiro & David Patiño & Jacobo Porteiro & Enrique Granada & José Luis Míguez, 2016. "Effect of Air Staging Ratios on the Burning Rate and Emissions in an Underfeed Fixed-Bed Biomass Combustor," Energies, MDPI, vol. 9(11), pages 1-16, November.
    16. Małgorzata Wzorek, 2020. "Evaluating the Potential for Combustion of Biofuels in Grate Furnaces," Energies, MDPI, vol. 13(8), pages 1-15, April.
    17. Hengli Zhang & Chunjiang Yu & Zhongyang Luo & Yu’an Li, 2020. "Investigation of Ash Deposition Dynamic Process in an Industrial Biomass CFB Boiler Burning High-Alkali and Low-Chlorine Fuel," Energies, MDPI, vol. 13(5), pages 1-11, March.
    18. Jerzy Chojnacki & Agnieszka Zdanowicz & Juraj Ondruška & Ľubomír Šooš & Małgorzata Smuga-Kogut, 2021. "The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw," Energies, MDPI, vol. 14(2), pages 1-13, January.
    19. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Araceli Regueiro & Lucie Jezerská & Raquel Pérez-Orozco & David Patiño & Jiří Zegzulka & Jan Nečas, 2019. "Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor," Energies, MDPI, vol. 12(7), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:463-:d:310056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.