IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp38-50.html
   My bibliography  Save this article

Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports

Author

Listed:
  • Proskurina, Svetlana
  • Rimppi, Heli
  • Heinimö, Jussi
  • Hansson, Julia
  • Orlov, Anton
  • Raghu, KC
  • Vakkilainen, Esa

Abstract

International trade in biomass for energy is growing and wood pellets have become a very successful internationally traded bioenergy-based commodity. Russian wood pellets have captured an important share of European markets. The wood pellets are mainly transported to European markets by sea. The paper addresses challenges facing wood pellet logistics in Northwest Russia, through the ports of St. Petersburg, Vyborg, and Ust-Luga, focusing on options for seaborne transportation of pellets from producer to consumer from the economic, environmental and regulatory perspectives. The study shows that seaborne transportation of Russian wood pellets faces many constraints and without improvements in all stages of the wood pellet transportation chain through Northwest Russian seaports, the future for Russian wood pellet exports to Europe does not seem promising from the economic and environmental perspectives. Optimal logistics-related decisions require analysis of each specific situation, with detailed study of the investment and production capacities of the individual companies involved. Better knowledge of the respective stages of the wood pellet transportation chain and full consideration of the environmental aspects involved will enable effective optimization actions to be taken. This study represents a starting point for further discussion of possible improvements to seaborne wood pellet transportation to European consumers.

Suggested Citation

  • Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:38-50
    DOI: 10.1016/j.rser.2015.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    2. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    3. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    4. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    5. Junginger, Martin & van Dam, Jinke & Zarrilli, Simonetta & Ali Mohamed, Fatin & Marchal, Didier & Faaij, Andre, 2011. "Opportunities and barriers for international bioenergy trade," Energy Policy, Elsevier, vol. 39(4), pages 2028-2042, April.
    6. Selkimäki, Mari & Mola-Yudego, Blas & Röser, Dominik & Prinz, Robert & Sikanen, Lauri, 2010. "Present and future trends in pellet markets, raw materials, and supply logistics in Sweden and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3068-3075, December.
    7. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    8. Raslavičius, Laurencas & Kučinskas, Vytautas & Jasinskas, Algirdas & Bazaras, Žilvinas, 2014. "Identifying renewable energy and building renovation solutions in the Baltic Sea region: The case of Kaliningrad Oblast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 196-203.
    9. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    10. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    11. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    12. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    13. Alexander Kolik & Artur Radziwill & Natalia Turdyeva, 2015. "Improving Transport Infrastructure in Russia," OECD Economics Department Working Papers 1193, OECD Publishing.
    14. Scarlat, N. & Dallemand, J.F. & Motola, V. & Monforti-Ferrario, F., 2013. "Bioenergy production and use in Italy: Recent developments, perspectives and potential," Renewable Energy, Elsevier, vol. 57(C), pages 448-461.
    15. Pristupa, Alexey O. & Mol, Arthur P.J., 2015. "Renewable energy in Russia: The take off in solid bioenergy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 315-324.
    16. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2012. "Portuguese pellets market: Analysis of the production and utilization constrains," Energy Policy, Elsevier, vol. 42(C), pages 129-135.
    17. Gamborg, Christian & Anker, Helle Tegner & Sandøe, Peter, 2014. "Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity," Energy Policy, Elsevier, vol. 69(C), pages 326-333.
    18. Hansson, Julia & Berndes, Gran & Johnsson, Filip & Kjrstad, Jan, 2009. "Co-firing biomass with coal for electricity generation--An assessment of the potential in EU27," Energy Policy, Elsevier, vol. 37(4), pages 1444-1455, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    2. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Marta Mańkowska & Michał Pluciński & Izabela Kotowska, 2021. "Biomass Sea-Based Supply Chains and the Secondary Ports in the Era of Decarbonization," Energies, MDPI, vol. 14(7), pages 1-24, March.
    4. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    5. Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634.
    6. Karner, K. & Dißauer, C. & Enigl, M. & Strasser, C. & Schmid, E., 2017. "Environmental trade-offs between residential oil-fired and wood pellet heating systems: Forecast scenarios for Austria until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 868-879.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    2. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    3. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    4. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    5. Barrette, Julie & Thiffault, Evelyne & Achim, Alexis & Junginger, Martin & Pothier, David & De Grandpré, Louis, 2017. "A financial analysis of the potential of dead trees from the boreal forest of eastern Canada to serve as feedstock for wood pellet export," Applied Energy, Elsevier, vol. 198(C), pages 410-425.
    6. Nunes, João & Freitas, Helena, 2016. "An indicator to assess the pellet production per forest area. A case-study from Portugal," Forest Policy and Economics, Elsevier, vol. 70(C), pages 99-105.
    7. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    8. Mansuy, Nicolas & Thiffault, Evelyne & Lemieux, Sébastien & Manka, Francis & Paré, David & Lebel, Luc, 2015. "Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada," Applied Energy, Elsevier, vol. 154(C), pages 62-73.
    9. repec:aud:audfin:v:21:y:2019:i:50:p:75 is not listed on IDEAS
    10. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    11. Brand, Martha Andreia & Jacinto, Rodolfo Cardoso, 2020. "Apple pruning residues: Potential for burning in boiler systems and pellet production," Renewable Energy, Elsevier, vol. 152(C), pages 458-466.
    12. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    13. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    14. Inge Stupak & Jamie Joudrey & C. Tattersall Smith & Luc Pelkmans & Helena Chum & Annette Cowie & Oskar Englund & Chun Sheng Goh & Martin Junginger, 2016. "A global survey of stakeholder views and experiences for systems needed to effectively and efficiently govern sustainability of bioenergy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 89-118, January.
    15. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    16. Sgarbossa, Andrea & Costa, Corrado & Menesatti, Paolo & Antonucci, Francesca & Pallottino, Federico & Zanetti, Michela & Grigolato, Stefano & Cavalli, Raffaele, 2015. "A multivariate SIMCA index as discriminant in wood pellet quality assessment," Renewable Energy, Elsevier, vol. 76(C), pages 258-263.
    17. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    18. Mohr, Lukas & Burg, Vanessa & Thees, Oliver & Trutnevyte, Evelina, 2019. "Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland," Renewable Energy, Elsevier, vol. 140(C), pages 840-851.
    19. Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
    20. Kalvis Kons & Boško Blagojević & Blas Mola-Yudego & Robert Prinz & Johanna Routa & Biljana Kulisic & Bruno Gagnon & Dan Bergström, 2022. "Industrial End-Users’ Preferred Characteristics for Wood Biomass Feedstocks," Energies, MDPI, vol. 15(10), pages 1-22, May.
    21. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:38-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.