IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v42y2015icp1362-1369.html
   My bibliography  Save this article

The suitability of wood pellet heating for domestic households: A review of literature

Author

Listed:
  • Thomson, Harriet
  • Liddell, Christine

Abstract

Due to increasing government support for renewable energy in combination with high fossil fuel prices and environmental concerns, demand for wood pellet heating is rising all over Europe. Despite the rapid growth in wood pellet heating, the suitability and usability of wood pellet boilers in domestic settings has received relatively little attention compared with either alternative renewable heating technologies or with commercial applications of biomass heating. This article brings together the fragmented literature on wood pellet heating, and the application of this heating type in domestic settings, with a particular focus on assessing the suitability of wood pellet heating for low-income households who are not connected to the natural gas network.

Suggested Citation

  • Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
  • Handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1362-1369
    DOI: 10.1016/j.rser.2014.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400940X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fiedler, Frank, 2004. "The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 201-221, June.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Karkania, V. & Fanara, E. & Zabaniotou, A., 2012. "Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1426-1436.
    4. Wrapson, Wendy & Devine-Wright, Patrick, 2014. "‘Domesticating’ low carbon thermal technologies: Diversity, multiplicity and variability in older person, off grid households," Energy Policy, Elsevier, vol. 67(C), pages 807-817.
    5. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    6. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    7. Geir Skjevrak & Bertha Maya Sopha, 2012. "Wood-Pellet Heating in Norway: Early Adopters’ Satisfaction and Problems That Have Been Experienced," Sustainability, MDPI, vol. 4(6), pages 1-15, May.
    8. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    3. Rafi, Muhammed & Naseef, Mohemmad & Prasad, Salu, 2021. "Multidimensional energy poverty and human capital development: Empirical evidence from India," Energy Economics, Elsevier, vol. 101(C).
    4. Zhu, Tong & Curtis, John & Clancy, Matthew, 2023. "Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland," Applied Energy, Elsevier, vol. 330(PA).
    5. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    6. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    8. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    9. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    10. Ekaterina A. Syrtsova & Ekaterina D. Ivantsova & Alexandra S. Miskiv & Evgeniya V. Zander & Anton I. Pyzhev, 2024. "Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk," Energies, MDPI, vol. 17(3), pages 1-15, January.
    11. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    12. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    13. Boso, Àlex & Oltra, Christian & Hofflinger, Álvaro, 2019. "Participation in a programme for assisted replacement of wood-burning stoves in Chile: The role of sociodemographic factors, evaluation of air quality and risk perception," Energy Policy, Elsevier, vol. 129(C), pages 1220-1226.
    14. Oh, Juhyun & Suh, Dong Hee, 2024. "Exploring the import allocation of wood pellets: Insights from price and policy influences under the renewable portfolio standard," Forest Policy and Economics, Elsevier, vol. 161(C).
    15. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Karner, K. & Dißauer, C. & Enigl, M. & Strasser, C. & Schmid, E., 2017. "Environmental trade-offs between residential oil-fired and wood pellet heating systems: Forecast scenarios for Austria until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 868-879.
    17. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    18. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    19. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    20. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    21. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelsen, Carl Christian & Madlener, Reinhard, 2015. "Beyond Technology Adoption: Homeowner Satisfaction with Newly Adopted Residential Heating Systems," FCN Working Papers 1/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    3. Boso, Àlex & Oltra, Christian & Hofflinger, Álvaro, 2019. "Participation in a programme for assisted replacement of wood-burning stoves in Chile: The role of sociodemographic factors, evaluation of air quality and risk perception," Energy Policy, Elsevier, vol. 129(C), pages 1220-1226.
    4. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2018. "Public acceptance of environmentally friendly heating in Beijing: A case of a low temperature air source heat pump," Energy Policy, Elsevier, vol. 117(C), pages 75-85.
    5. Mei, Bin & Wetzstein, Michael, 2017. "Burning wood pellets for US electricity generation? A regime switching analysis," Energy Economics, Elsevier, vol. 65(C), pages 434-441.
    6. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    7. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    8. Rommel, Kai & Sagebiel, Julian, 2017. "Preferences for micro-cogeneration in Germany: Policy implications for grid expansion from a discrete choice experiment," Applied Energy, Elsevier, vol. 206(C), pages 612-622.
    9. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    10. Michelsen, Carl Christian & Madlener, Reinhard, 2011. "Homeowners' Motivation to Adopt a Residential Heating System: A Principal-Component Analysis," FCN Working Papers 17/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jan 2013.
    11. Michelsen, Carl Christian & Madlener, Reinhard, 2013. "Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany," Energy Policy, Elsevier, vol. 57(C), pages 221-233.
    12. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    13. García-Maroto, I. & García-Maraver, A. & Muñoz-Leiva, F. & Zamorano, M., 2015. "Consumer knowledge, information sources used and predisposition towards the adoption of wood pellets in domestic heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 207-215.
    14. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    15. Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
    16. Outcault, Sarah & Sanguinetti, Angela & Nelson, Leslie, 2022. "Technology characteristics that influence adoption of residential distributed energy resources: Adapting Rogers’ framework," Energy Policy, Elsevier, vol. 168(C).
    17. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    18. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    19. Michelsen, Claus & El-Shagi, Makram & Rosenschon, Sebastian, 2016. "The diffusion of "green'' buildings in the housing market: empirics on the long run effects of energy efficiency regulation," VfS Annual Conference 2016 (Augsburg): Demographic Change 145534, Verein für Socialpolitik / German Economic Association.
    20. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1362-1369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.