IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148124023413.html
   My bibliography  Save this article

Emissions reduction from wood pellet stoves by uniform feeding

Author

Listed:
  • Da Lio, L.
  • Bortolus, M.
  • Canu, P.

Abstract

The instantaneous fuel-to-air ratio in pellet stoves may vary because of the feeding mechanism. The pellet feed flow rate variability of a standard screw feeder was quantitatively assessed with real-time measurements. Temporary excess or deficit of pellets commonly occur. The variability can be significantly reduced with a new feeder, by approx. 70%, both at nominal (full) and partial (half) load operation. The analysis of the instantaneous emissions reveals that the fuel feed instabilities cause temporary sub-optimal fuel-to-air ratio and, in turn, peaks of pollutants emissions. The impact on the emissions of a more regular pellet feeder is impressive. A reduction of CO emission by 46% and 37.5%, and of PM by 52% and 44% at nominal and partial load, respectively was measured. NOx emissions are less affected by a more uniform feed rate, being predominantly from fuel nitrogen.

Suggested Citation

  • Da Lio, L. & Bortolus, M. & Canu, P., 2025. "Emissions reduction from wood pellet stoves by uniform feeding," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148124023413
    DOI: 10.1016/j.renene.2024.122273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    2. Vasiliki Kamperidou, 2022. "Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics," Energies, MDPI, vol. 15(8), pages 1-20, April.
    3. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    4. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    5. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    6. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    7. Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Coccia & Ramoon Barros Lovate Temporim & Alessandro Paglianti & Alessia Di Giuseppe & Franco Cotana & Andrea Nicolini, 2025. "Energy and Environmental Valorisation of Residual Wood Pellet by Small Size Residential Heating Systems," Sustainability, MDPI, vol. 17(9), pages 1-17, April.
    2. Rui Pinho & Amadeu D. S. Borges, 2025. "Comprehensive Evaluation of Combustion Performance and Emissions from Commercial Pellets in Small-Scale Boilers," Energies, MDPI, vol. 18(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    2. Yun Deng & Xueling Ran & Hussien Elshareef & Renjie Dong & Yuguang Zhou, 2025. "Emergy, Environmental and Economic (3E) Assessment of Biomass Pellets from Agricultural Waste," Agriculture, MDPI, vol. 15(6), pages 1-17, March.
    3. Cheng, Wei & Chen, Jianfeng & Yang, Wei & Jiang, Hao & Zhu, Youjian & Ti, Shuguang & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of sludge-based additive on particulate matter emission during the combustion of agricultural biomass pellet," Energy, Elsevier, vol. 313(C).
    4. Hu, Junhao & Qi, Nianxiang & Yang, Haiping & Liu, Sumin & Chen, Wei & Cheng, Wei & Chen, Hanping, 2024. "Investigation on steam co-gasification of torrefied biomass and coal: Thermal behavior, reactivity, product characteristic and synergy," Energy, Elsevier, vol. 313(C).
    5. Song, Hao & Xia, Jiageng & Hu, Qiang & Cheng, Wei & Yang, Yang & Chen, Hanping & Yang, Haiping, 2024. "Comprehensive experimental assessment of biomass steam gasification with different types: correlation and multiple linear regression analysis with feedstock characteristics," Renewable Energy, Elsevier, vol. 237(PA).
    6. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    7. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    8. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Bartosz Choiński & Ewa Szatyłowicz & Izabela Zgłobicka & Magdalena Joka Ylidiz, 2022. "A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO 2 Emission," Energies, MDPI, vol. 16(1), pages 1-13, December.
    10. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    11. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    12. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    13. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    14. Rafi, Muhammed & Naseef, Mohemmad & Prasad, Salu, 2021. "Multidimensional energy poverty and human capital development: Empirical evidence from India," Energy Economics, Elsevier, vol. 101(C).
    15. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    16. Elena Leoni & Thomas Gasperini & Nicolò Di Marzio & Rodolfo Picchio & Giuseppe Toscano & Daniele Duca, 2024. "Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion," Energies, MDPI, vol. 17(4), pages 1-16, February.
    17. Głód, Krzysztof & Lasek, Janusz A. & Supernok, Krzysztof & Pawłowski, Przemysław & Fryza, Rafał & Zuwała, Jarosław, 2023. "Torrefaction as a way to increase the waste energy potential," Energy, Elsevier, vol. 285(C).
    18. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    19. Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
    20. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148124023413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.