IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp66-75.html
   My bibliography  Save this article

Influence of pellet length on performance of pellet room heaters under real life operation conditions

Author

Listed:
  • Wöhler, Marius
  • Jaeger, Dirk
  • Reichert, Gabriel
  • Schmidl, Christoph
  • Pelz, Stefan K.

Abstract

Wood pellet combustion for heating is increasing in importance in Europe. However, the most commonly used heating appliances such as wood pellet stoves are responsible for emissions which could negatively affect human health. The emissions quality of pellet stoves is influenced by pellet properties and combustion phase characteristics. The goal of this study is to investigate the influence of pellet length on the performance of pellets stoves under real life operation conditions. Three softwood pellet samples were produced, differing only in length. Combustion tests with two different types of pellet stoves were performed in steady and non-steady combustion phases. Gaseous and particulate emissions as well as fuel mass flow were measured. Results show a reduced fuel mass flow (up to 36%) into the combustion chamber for long pellets compared to short pellets. The results of the combustion tests show a considerable influence of pellet length on the performance of both pellet stoves. For example, carbon monoxide emissions and particulate emissions of one stove in nominal load operation increased for long pellets compared to short pellets from 185 mg/m3 to 882 mg/m3, and from 27 mg/m3 to 37 mg/m3 respectively. Results also show a considerable influence of the combustion phase on the emissions level.

Suggested Citation

  • Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:66-75
    DOI: 10.1016/j.renene.2016.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    2. Wöhler, Marius & Andersen, Jes Sig & Becker, Gero & Persson, Henrik & Reichert, Gabriel & Schön, Claudia & Schmidl, Christoph & Jaeger, Dirk & Pelz, Stefan K., 2016. "Investigation of real life operation of biomass room heating appliances – Results of a European survey," Applied Energy, Elsevier, vol. 169(C), pages 240-249.
    3. Fiedler, Frank & Persson, Tomas, 2009. "Carbon monoxide emissions of combined pellet and solar heating systems," Applied Energy, Elsevier, vol. 86(2), pages 135-143, February.
    4. Gehrig, M. & Pelz, S. & Jaeger, D. & Hofmeister, G. & Groll, A. & Thorwarth, H. & Haslinger, W., 2015. "Implementation of a firebed cooling device and its influence on emissions and combustion parameters at a residential wood pellet boiler," Applied Energy, Elsevier, vol. 159(C), pages 310-316.
    5. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    6. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    7. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    8. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
    9. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    10. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    11. Khodaei, Hassan & Al-Abdeli, Yasir M. & Guzzomi, Ferdinando & Yeoh, Guan H., 2015. "An overview of processes and considerations in the modelling of fixed-bed biomass combustion," Energy, Elsevier, vol. 88(C), pages 946-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
    2. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    3. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Carvalho, R. & Tarelho, L.A.C. & Paniagua, S. & Nunes, T. & Otero, M. & Calvo, L.F. & Alves, C., 2019. "Emissions from residential pellet combustion of an invasive acacia species," Renewable Energy, Elsevier, vol. 140(C), pages 319-329.
    4. Ghorashi, Seyed Amin & Khandelwal, Bhupendra, 2023. "Toward the ultra-clean and highly efficient biomass-fired heaters. A review," Renewable Energy, Elsevier, vol. 205(C), pages 631-647.
    5. Elena Leoni & Thomas Gasperini & Nicolò Di Marzio & Rodolfo Picchio & Giuseppe Toscano & Daniele Duca, 2024. "Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion," Energies, MDPI, vol. 17(4), pages 1-16, February.
    6. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    2. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    3. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    4. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    5. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    6. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    7. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    8. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    9. Wöhler, Marius & Andersen, Jes Sig & Becker, Gero & Persson, Henrik & Reichert, Gabriel & Schön, Claudia & Schmidl, Christoph & Jaeger, Dirk & Pelz, Stefan K., 2016. "Investigation of real life operation of biomass room heating appliances – Results of a European survey," Applied Energy, Elsevier, vol. 169(C), pages 240-249.
    10. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.
    11. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Carvalho, R. & Tarelho, L.A.C. & Paniagua, S. & Nunes, T. & Otero, M. & Calvo, L.F. & Alves, C., 2019. "Emissions from residential pellet combustion of an invasive acacia species," Renewable Energy, Elsevier, vol. 140(C), pages 319-329.
    12. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    14. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2016. "User-centric approach for the design and sizing of natural convection biomass cookstoves for lower emissions," Energy, Elsevier, vol. 115(P1), pages 1202-1215.
    15. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    16. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    17. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    18. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    19. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    20. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:66-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.