IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1701-1715d46213.html
   My bibliography  Save this article

A Path Forward for Low Carbon Power from Biomass

Author

Listed:
  • Amanda D. Cuellar

    (Department of Civil, Architectural and Environmental Engineering, the University of Texas at Austin, 301 E. Dean Keeton St., Austin, TX 78712, USA)

  • Howard Herzog

    (Massachusetts Institute of Technology, Room E19-370L, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

Abstract

The two major pathways for energy utilization from biomass are conversion to a liquid fuel ( i.e. , biofuels) or conversion to electricity ( i.e. , biopower). In the United States (US), biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal) (5%–10% biomass), medium co-firing (15%–20% biomass), and dedicated biomass firing (100% biomass). We analyze the economic and greenhouse gas (GHG) emissions impact of each of these options, with and without CO 2 capture and storage (CCS). Our analysis shows that in the absence of land use change emissions, all biomass co-combustion scenarios result in a decrease in GHG emissions over coal generation alone. The two biggest barriers to biopower are concerns about carbon neutrality of biomass fuels and the high cost compared to today’s electricity prices. This paper recommends two policy actions. First, the need to define sustainability criteria and initiate a certification process so that biomass providers have a fixed set of guidelines to determine whether their feedstocks qualify as renewable energy sources. Second, the need for a consistent, predictable policy that provides the economic incentives to make biopower economically attractive.

Suggested Citation

  • Amanda D. Cuellar & Howard Herzog, 2015. "A Path Forward for Low Carbon Power from Biomass," Energies, MDPI, vol. 8(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1701-1715:d:46213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1701/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    3. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    4. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    5. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    6. Aliya Askarova & Montserrat Zamorano & Jaime Martín-Pascual & Aizhan Nugymanova & Saltanat Bolegenova, 2022. "A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan," Energies, MDPI, vol. 15(17), pages 1-15, September.
    7. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    8. Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
    9. Verma, Munna & Loha, Chanchal & Sinha, Amar Nath & Chatterjee, Pradip Kumar, 2017. "Drying of biomass for utilising in co-firing with coal and its impact on environment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 732-741.
    10. Yuting Wu & Ruiping Zhi & Biao Lei & Wei Wang & Jingfu Wang & Guoqiang Li & Huan Wang & Chongfang Ma, 2016. "Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions," Energies, MDPI, vol. 9(7), pages 1-17, June.
    11. Beata Kurc & Piotr Lijewski & Łukasz Rymaniak & Paweł Fuć & Marita Pigłowska & Rafał Urbaniak & Bartosz Ciupek, 2020. "High-Energy Solid Fuel Obtained from Carbonized Rice Starch," Energies, MDPI, vol. 13(16), pages 1-18, August.
    12. Liu, Zuoming, 2019. "The optimal biopower capacity in co-firing plants– An empirical analysis," Energy Economics, Elsevier, vol. 78(C), pages 392-400.
    13. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    14. Joachim Kozioł & Joanna Czubala & Michał Kozioł & Piotr Ziembicki, 2020. "Generalized Energy and Ecological Characteristics of the Process of Co-Firing Coal with Biomass in a Steam Boiler," Energies, MDPI, vol. 13(10), pages 1-12, May.
    15. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    16. Yan, Linbo & Wang, Ziqi & Cao, Yang & He, Boshu, 2020. "Comparative evaluation of two biomass direct-fired power plants with carbon capture and sequestration," Renewable Energy, Elsevier, vol. 147(P1), pages 1188-1198.
    17. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    18. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    19. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    20. Nicolas, Claire & Chen, Y.-H. Henry & Morris, Jennifer & Winchester, Niven & Paltsev, Sergey, 2017. "Bioenergy with carbon capture and storage: key issues and major challenges," Conference papers 332858, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    21. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    22. Ali, Ghaffar & Bashir, Muhammad Khalid & Ali, Hassan & Bashir, Muhammad Hamid, 2016. "Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 25-29.
    23. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1701-1715:d:46213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.