IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p578-d1024458.html
   My bibliography  Save this article

The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier

Author

Listed:
  • Savelii Kukharets

    (Department of Agricultural Engineering and Safety, Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, Akademija, LT-53362 Kaunas, Lithuania)

  • Algirdas Jasinskas

    (Department of Agricultural Engineering and Safety, Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, Akademija, LT-53362 Kaunas, Lithuania)

  • Gennadii Golub

    (Department of Tractors, Automobiles and Bioenergy Resources, National University of Life and Environmental Sciences of Ukraine, Heroev Oborony Str. 15B, 03-040 Kyiv, Ukraine)

  • Olena Sukmaniuk

    (Department Machines Processes and Agroengineering Equipment, Polissia National University, Staryi Blvd 7, 10-008 Zhytomyr, Ukraine)

  • Taras Hutsol

    (Department of Mechanics and Agroecosystems Engineering, Polissia National University, Staryi Blvd 7, 10-008 Zhytomyr, Ukraine)

  • Krzysztof Mudryk

    (Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland)

  • Jonas Čėsna

    (Department of Mechanical, Energy and Biotechnology Engineering, Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, Akademija, LT-53362 Kaunas, Lithuania)

  • Szymon Glowacki

    (Department of Fundamentals of Engineering and Power Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences (SGGW), 02-787 Warsaw, Poland)

  • Iryna Horetska

    (Innovative Program of Strategic Development of the University, European Social Fund, University of Agriculture in Krakow, 30-149 Krakow, Poland)

Abstract

In this work, a study was performed on the influence of the ratio of height to the diameter of the reduction zone of a small-size downdraft gasifier as well as of the fuel fraction sizes on the gas quality (the quality was evaluated for CO content). The ratio of a full side area to the volume of a fuel fraction ( SVR ) was used as a fuel parameter. The maximum CO concentration was observed when using a small fuel fraction with SVR —0.7–0.72 mm −1 and when adhering to the ratio of height to the diameter of the reduction zone H/D —0.5–0.6. The maximum electric power for gasoline generators (nominal power equaled 4 kW) when using the gas received from the fast-growing hybrid willow biomass equaled 2.4 kW. This power is 37.5% lower than when using gasoline and 7.0% lower than when using the gas received from the hardwood biomass. The emissions of harmful gases into the atmosphere by the gasoline generator engine equaled 0.12–0.14% CO and 24–27 mln −1 C x H y . The emissions were 64.8 times less for CO and 8.5 times less for C x H y when compared with using gasoline.

Suggested Citation

  • Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:578-:d:1024458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatoliy Tryhuba & Taras Hutsol & Maciej Kuboń & Inna Tryhuba & Serhii Komarnitskyi & Sylwester Tabor & Dariusz Kwaśniewski & Krzysztof Mudryk & Oleksandr Faichuk & Tetyana Hohol & Wioletta Tomaszewsk, 2022. "Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Hunt, Natalie D. & Gower, Stith T. & Nadelhoffer, Knute & Lajtha, Kate & Townsend, Kimberly & Brye, Kristofor R., 2016. "Validation of an agroecosystem process model (AGRO-BGC) on annual and perennial bioenergy feedstocks," Ecological Modelling, Elsevier, vol. 321(C), pages 23-34.
    4. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    5. Sunny Vaish & Gagandeep Kaur & Naveen Kumar Sharma & Nikhil Gakkhar, 2022. "Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    6. Algirdas Jasinskas & Dionizas Streikus & Egidijus Šarauskis & Mečys Palšauskas & Kęstutis Venslauskas, 2020. "Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel," Energies, MDPI, vol. 13(6), pages 1-14, March.
    7. Daniel Nilsson & Håkan Rosenqvist, 2021. "Profitability of Crop Cultivation in Small Arable Fields When Taking Economic Values of Ecosystem Services into Account," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
    8. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    9. Tamon Baba & Hisako Nomura & Pao Srean & Tha Than & Kasumi Ito, 2022. "Effects of Mechanization and Investments on the Technical Efficiency of Cassava Farms in Cambodia," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    10. Tomi Thomasson & Kirsikka Kiviranta & Antton Tapani & Matti Tähtinen, 2021. "Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands," Energies, MDPI, vol. 14(19), pages 1-19, October.
    11. Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.
    12. Sylvie Valin & Serge Ravel & Philippe Pons de Vincent & Sébastien Thiery & Hélène Miller & Françoise Defoort & Maguelone Grateau, 2020. "Fluidised Bed Gasification of Diverse Biomass Feedstocks and Blends—An Overall Performance Study," Energies, MDPI, vol. 13(14), pages 1-19, July.
    13. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    14. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    15. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    16. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Hubert Kryszk & Algirdas Jasinskas, 2020. "Food Security in the Context of Liquid Biofuels Production," Energies, MDPI, vol. 13(23), pages 1-16, November.
    17. Rita Petlickaitė & Algirdas Jasinskas & Ramūnas Mieldažys & Kęstutis Romaneckas & Marius Praspaliauskas & Jovita Balandaitė, 2022. "Investigation of Pressed Solid Biofuel Produced from Multi-Crop Biomass," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    18. Szufa, S. & Piersa, P. & Junga, R. & Błaszczuk, A. & Modliński, N. & Sobek, S. & Marczak-Grzesik, M. & Adrian, Ł. & Dzikuć, M., 2023. "Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler," Energy, Elsevier, vol. 263(PE).
    19. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    20. Sara Alian & Ann Maclean, 2015. "Assessing Site Availability of Aspen and Northern Hardwoods for Potential Feedstock Development in Michigan: A Case Study," Land, MDPI, vol. 4(2), pages 1-23, May.
    21. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    22. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Oleksandr Labenko & Tetiana Sobchenko & Taras Hutsol & Michał Cupiał & Krzysztof Mudryk & Anna Kocira & Krystyna Pavlenko-Didur & Oleksandra Klymenko & Pavel Neuberger, 2022. "Project Environment and Outlook within the Scope of Technologically Integrated European Green Deal in EU and Ukraine," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    4. Anatoliy Tryhuba & Taras Hutsol & Inna Tryhuba & Krzysztof Mudryk & Valentyna Kukharets & Szymon Głowacki & Larysa Dibrova & Oleksandr Kozak & Krystyna Pavlenko-Didur, 2022. "Assessment of the Condition of the Project Environment for the Implementation of Technologically Integrated Projects of the “European Green Deal” Using Maize Waste," Energies, MDPI, vol. 15(21), pages 1-19, November.
    5. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    6. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Oleksandr Faichuk & Lesia Voliak & Taras Hutsol & Szymon Glowacki & Yuriy Pantsyr & Sergii Slobodian & Anna Szeląg-Sikora & Zofia Gródek-Szostak, 2022. "European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    9. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    10. Bilgili, Faik & Kocak, Emrah & Kuskaya, Sevda & Bulut, Umit, 2022. "Co-movements and causalities between ethanol production and corn prices in the USA: New evidence from wavelet transform analysis," Energy, Elsevier, vol. 259(C).
    11. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    12. Marta Marczak-Grzesik & Piotr Piersa & Mateusz Karczewski & Szymon Szufa & Hilal Ünyay & Aleksandra Kędzierska-Sar & Piotr Bochenek, 2021. "Modified Fly Ash-Based Adsorbents (MFA) for Mercury and Carbon Dioxide Removal from Coal-Fired Flue Gases," Energies, MDPI, vol. 14(21), pages 1-13, October.
    13. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    14. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    15. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    16. Dimitris Al. Katsaprakakis & Antonia Proka & Dimitris Zafirakis & Markos Damasiotis & Panos Kotsampopoulos & Nikos Hatziargyriou & Eirini Dakanali & George Arnaoutakis & Dimitrios Xevgenos, 2022. "Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities," Energies, MDPI, vol. 15(16), pages 1-34, August.
    17. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    19. Otton K. Roubinek & Anna Wilinska-Lisowska & Magdalena Jasinska & Andrzej G. Chmielewski & Krzysztof Czerwionka, 2023. "Production of Biogas from Distillation Residue as a Waste Material from the Distillery Industry in Poland," Energies, MDPI, vol. 16(7), pages 1-15, March.
    20. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:578-:d:1024458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.