IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13354-d693734.html
   My bibliography  Save this article

Profitability of Crop Cultivation in Small Arable Fields When Taking Economic Values of Ecosystem Services into Account

Author

Listed:
  • Daniel Nilsson

    (Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 190, S-234 22 Lomma, Sweden)

  • Håkan Rosenqvist

    (Independent Researcher, Prästvägen 5, S-268 73 Billeberga, Sweden)

Abstract

Small arable fields are beneficial with regard to ecosystem services, e.g., concerning biodiversity. By selecting appropriate crops and cultivation practices, arable fields can also be used as carbon sinks. The objectives of this study were to investigate what impact field conditions (e.g., field size and shape) and payments (subsidies) for environmental benefits have on profitability. A dynamic simulation model was used to simulate machine operations in fields of two different shapes and five different sizes (from 0.75 to 12.00 ha). A wide range of crops cultivated in Sweden were investigated (fallow land and plantation of Norway spruce were also included). A perimeter-based subsidy was suggested in order to conserve and promote biodiversity, and an area- and crop-based subsidy was suggested in order to promote sequestration of soil organic carbon (SOC). The results showed that, without financial support and from a purely economic point of view, most field types investigated should be planted with Norway spruce. With currently available subsidies, e.g., EU Common Agricultural Policy (CAP) direct payments, hybrid aspen, poplar, fallow, and extensive ley cultivation are the most profitable crops. Perimeter-based subsidies favoured the net gain for small fields. As expected, a subsidy for sequestration of SOC favoured cultivation of specific SOC-sequestering crops such as ley, willow, and poplar. Our recommendation for future studies is to investigate a well-balanced combination of perimeter-based support and SOC sequestration support that benefits biodiversity and climate under different cultivation conditions.

Suggested Citation

  • Daniel Nilsson & Håkan Rosenqvist, 2021. "Profitability of Crop Cultivation in Small Arable Fields When Taking Economic Values of Ecosystem Services into Account," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13354-:d:693734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    2. Ackerman, Frank & Stanton, Elizabeth A., 2012. "Climate risks and carbon prices: Revising the social cost of carbon," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-25.
    3. Robert Tinch & Nicola Beaumont & Tim Sunderland & Ece Ozdemiroglu & David Barton & Colm Bowe & Tobias Börger & Paul Burgess & Canon Nigel Cooper & Michela Faccioli & Pierre Failler & Ioanna Gkolemi & , 2019. "Economic valuation of ecosystem goods and services: a review for decision makers," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 8(4), pages 359-378, October.
    4. Pavel, Ciaian & Gomez y Paloma, Sergio, "undated". "The Value of EU Agricultural Landscape," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 102727, Agricultural and Applied Economics Association.
    5. Gonzalez, X.P. & Marey, M.F. & Alvarez, C.J., 2007. "Evaluation of productive rural land patterns with joint regard to the size, shape and dispersion of plots," Agricultural Systems, Elsevier, vol. 92(1-3), pages 52-62, January.
    6. Knut Per Hasund & Mitesh Kataria & Carl Johan Lagerkvist, 2011. "Valuing public goods of the agricultural landscape: a choice experiment using reference points to capture observable heterogeneity," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(1), pages 31-53.
    7. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    2. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    3. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    4. repec:osf:socarx:b79yu_v1 is not listed on IDEAS
    5. Robert Huber & Robert Finger, 2020. "A Meta‐analysis of the Willingness to Pay for Cultural Services from Grasslands in Europe," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(2), pages 357-383, June.
    6. Steve Dahlke, 2019. "Short Run Effects of Carbon Policy on U.S. Electricity Markets," Energies, MDPI, vol. 12(11), pages 1-21, June.
    7. Dahlke, Steven, 2019. "Short run effects of carbon policy on U.S. electricity markets," SocArXiv b79yu, Center for Open Science.
    8. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    9. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    10. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    11. Claudia Kettner-Marx & Daniela Kletzan-Slamanig, 2018. "Carbon Taxes from an Economic Perspective," WIFO Working Papers 554, WIFO.
    12. Baker, Erin & Bosetti, Valentina & Salo, Ahti, "undated". "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    13. Wójcik - Leń, Justyna & Postek, Paweł & Stręk, Żanna & Leń, Przemysław, 2020. "Proposed algorithm for the identification of land for consolidation with regard to spatial variability of soil quality," Land Use Policy, Elsevier, vol. 94(C).
    14. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    15. Žáková Kroupová, Zdenka & Havlíková, M. & Hálová, P. & Malý, M., . "Economic Valuation of Mountain Landscapes and Ecosystems: A Meta-Analysis of Case Studies," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(3), pages 1-10.
    16. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    17. Dietz, Simon, 2012. "The treatment of risk and uncertainty in the US social cost of carbon for regulatory impact analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-12.
    18. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    19. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    20. Anastasija Novikova & Lucia Rocchi & Bernardas Vaznonis, 2019. "Valuing Agricultural Landscape: Lithuanian Case Study Using a Contingent Valuation Method," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    21. O'Mahony, Tadhg & Escardó-Serra, Paula & Dufour, Javier, 2018. "Revisiting ISEW Valuation Approaches: The Case of Spain Including the Costs of Energy Depletion and of Climate Change," Ecological Economics, Elsevier, vol. 144(C), pages 292-303.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13354-:d:693734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.