IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4796-d1174338.html
   My bibliography  Save this article

Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design

Author

Listed:
  • Dan Liu

    (College of Civil Engineering and Water Conservancy, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Da Teng

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Yan Zhu

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Xingde Wang

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Hanyang Wang

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

Abstract

In the current study, corn stalk rinds were used as feedstock for the production of solid-fuel pellets. In an effort to comprehensively analyze the effects of different operational parameters on the physical properties of pellets, response surface methodology (RSM) was employed in conjunction with a Box–Behnken experimental design (BBD). By assessing multiple variables simultaneously and examining their interactions, BBD facilitates the development of a reliable response model that can predict how changes in independent variables will impact response variables. The recorded responses included relaxed density, mechanical durability, and compressive strength. Based on the results, greater R 2 values of 0.9467, 0.8669, and 0.9196, could be, respectively, attained for the quadratic regression models. The analysis of variance revealed that all independent variables had significant effects on the responses. The optimal processing condition for the pellets was established by determining the ideal combination of operational parameters. The process entailed the choice of a particle dimension measuring 0.5 mm, a moisture level of 11.35%, the application of heat at 125.7 °C on the die, and the utilization of a molding pressure of 154.2 MPa. Based on these factors, the predicted response values were determined to be 1639.61 kg/m 3 for relaxed density, 97.95% for mechanical durability, and 10.18 MPa for compressive strength. The values obtained experimentally under the optimized conditions were similar to the predicted values with a desirability value of 1.00.

Suggested Citation

  • Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4796-:d:1174338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Tianyu & Yu, Yan & Wan, Zhangmin & Zargar, Shiva & Wu, Jie & Bi, Ran & Sokhansanj, Shahabaddine & Tu, Qingshi & Rojas, Orlando J., 2022. "Energy pellets from whole-wheat straw processed with a deep eutectic solvent: A comprehensive thermal, molecular and environmental evaluation," Renewable Energy, Elsevier, vol. 194(C), pages 902-911.
    2. Iuliana Gageanu & Dan Cujbescu & Catalin Persu & Paula Tudor & Petru Cardei & Mihai Matache & Valentin Vladut & Sorin Biris & Iulian Voicea & Nicoleta Ungureanu, 2021. "Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass," Energies, MDPI, vol. 14(14), pages 1-22, July.
    3. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    4. Jaya Shankar Tumuluru, 2019. "Pelleting of Pine and Switchgrass Blends: Effect of Process Variables and Blend Ratio on the Pellet Quality and Energy Consumption," Energies, MDPI, vol. 12(7), pages 1-26, March.
    5. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    6. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    7. Niedziółka, Ignacy & Szpryngiel, Mieczysław & Kachel-Jakubowska, Magdalena & Kraszkiewicz, Artur & Zawiślak, Kazimierz & Sobczak, Paweł & Nadulski, Rafał, 2015. "Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass," Renewable Energy, Elsevier, vol. 76(C), pages 312-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    2. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    4. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    5. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    6. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    8. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    9. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    10. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    11. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    12. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    13. Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    14. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    15. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    16. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    17. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    18. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    19. Pérez-Fortes, Mar & Laínez-Aguirre, José Miguel & Arranz-Piera, Pol & Velo, Enrique & Puigjaner, Luis, 2012. "Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach," Energy, Elsevier, vol. 44(1), pages 79-95.
    20. Wioletta Żukiewicz-Sobczak & Agnieszka Latawiec & Paweł Sobczak & Bernardo Strassburg & Dorota Plewik & Małgorzata Tokarska-Rodak, 2020. "Biochars Originating from Different Biomass and Pyrolysis Process Reveal to Have Different Microbial Characterization: Implications for Practice," Sustainability, MDPI, vol. 12(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4796-:d:1174338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.