The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chico-Santamarta, Leticia & Chaney, Keith & Godwin, Richard John & White, David Richard & Humphries, Andrea Claire, 2012. "Physical quality changes during the storage of canola (Brassica napus L.) straw pellets," Applied Energy, Elsevier, vol. 95(C), pages 220-226.
- Riva, Lorenzo & Surup, Gerrit Ralf & Buø, Therese Videm & Nielsen, Henrik Kofoed, 2019. "A study of densified biochar as carbon source in the silicon and ferrosilicon production," Energy, Elsevier, vol. 181(C), pages 985-996.
- Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
- Larsson, Sylvia H. & Rudolfsson, Magnus & Nordwaeger, Martin & Olofsson, Ingemar & Samuelsson, Robert, 2013. "Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce," Applied Energy, Elsevier, vol. 102(C), pages 827-832.
- Jaya Shankar Tumuluru, 2019. "Pelleting of Pine and Switchgrass Blends: Effect of Process Variables and Blend Ratio on the Pellet Quality and Energy Consumption," Energies, MDPI, vol. 12(7), pages 1-26, March.
- Fernández-Puratich, H. & Hernández, D. & Lerma Arce, V., 2017. "Characterization and cost savings of pellets fabricated from Zea mays waste from corn mills combined with Pinus radiata," Renewable Energy, Elsevier, vol. 114(PB), pages 448-454.
- Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
- Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
- Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
- Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
- Giuseppe Toscano & Elena Leoni & Carmine De Francesco & Giacomo Ciccone & Thomas Gasperini, 2023. "The Application of Image Acquisition and Processing Techniques for the Determination of Wooden Pellet Length as an Alternative to ISO 17829," Resources, MDPI, vol. 12(10), pages 1-12, October.
- Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
- Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
- Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
- Arkadiusz Dyjakon & Tomasz Noszczyk & Agata Mostek, 2021. "Mechanical Durability and Grindability of Pellets after Torrefaction Process," Energies, MDPI, vol. 14(20), pages 1-16, October.
- Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
- Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
- Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
- Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
- Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
- Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
- Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
- Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
- Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
- Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
- Jakub Styks & Marek Wróbel, 2024. "Modular Open Chamber Stand for Biomass Densification Using the Example of Miscanthus × Giganteus Greef Et Deu," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
- Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
- Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
More about this item
Keywords
biomass pellet; mechanical durability; ISO standard 17831-1; pellet length distribution; image processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3000-:d:369944. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.