IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i2p43-d1661808.html
   My bibliography  Save this article

Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus ® Standards Through Strategic Blending

Author

Listed:
  • Amadeu D. S. Borges

    (CQ-VR, Chemistry Research Centre-Vila Real, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
    Laboratory of Thermal Sciences and Sustainability, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
    Engineering Department, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

  • Paulo Matos

    (Laboratory of Thermal Sciences and Sustainability, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

  • Miguel Oliveira

    (CQ-VR, Chemistry Research Centre-Vila Real, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
    Laboratory of Thermal Sciences and Sustainability, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

Abstract

Cork processing generates significant by-products that pose environmental challenges and waste management concerns. This study investigates the potential of utilizing cork residues—finishing powders, grinding powders, and sawdust—for biomass pellet production, emphasizing compliance with ENplus ® A1, A2, and B standards. Physical, chemical, and calorimetric analyses reveal that sawdust is the only material capable of independently meeting ENplus ® requirements, due to its low nitrogen (0.19%) and ash (0.22%) contents. However, its low net heating value necessitates blending with cork residues for improved energy performance. Finishing powders, despite a high net heating value (17.36 MJ/kg) and low ash content (0.37%), are restricted by their elevated nitrogen levels (1.59%). Grinding powders, with net heating values ranging from 16.25 to 17.78 MJ/kg, offer limited suitability due to high ash and nitrogen contents. For Class A1, mixtures require 85–87% sawdust, limiting cork residue incorporation to 15%. For Class A2, sawdust inclusion drops to 65–70%, allowing for greater use of cork residues and boosting net heating values to 16.74 MJ/kg. Class B mixtures achieve the highest incorporation of cork residues (up to 65%), with net heating values reaching 16.92 MJ/kg, suitable for industrial applications. These results highlight blending strategies as essential for balancing regulatory compliance, energy efficiency, and waste valorization. Future research should focus on pretreatment methods, alternative biomass sources, and lifecycle assessments to enhance compliance and scalability, promoting sustainable energy solutions and circular economy goals.

Suggested Citation

  • Amadeu D. S. Borges & Paulo Matos & Miguel Oliveira, 2025. "Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus ® Standards Through Strategic Blending," Clean Technol., MDPI, vol. 7(2), pages 1-17, May.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:2:p:43-:d:1661808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/2/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/2/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco José Sepúlveda & José Ignacio Arranz & María Teresa Miranda & Irene Montero & Carmen Victoria Rojas, 2018. "Drying and Pelletizing Analysis of Waste from Cork Granulated Industry," Energies, MDPI, vol. 11(1), pages 1-14, January.
    2. Nicolás M. Clauser & Giselle González & Carolina M. Mendieta & Julia Kruyeniski & María C. Area & María E. Vallejos, 2021. "Biomass Waste as Sustainable Raw Material for Energy and Fuels," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    3. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    4. Al-Kassir, A. & Gañán-Gómez, J. & Mohamad, A.A. & Cuerda-Correa, E.M., 2010. "A study of energy production from cork residues: Sawdust, sandpaper dust and triturated wood," Energy, Elsevier, vol. 35(1), pages 382-386.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haouari Khadra & Rahmani Kouider & Naas Toufik Tayeb & Awf Al-Kassir & Juan Pablo Carrasco-Amador, 2022. "Numerical Simulation of the Cleaning Performance of a Venturi Scrubber," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    3. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    4. Saeed Soltani & Hassan Athari & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    5. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability, Springer, vol. 2(1), pages 281-312, March.
    6. Clauser, Nicolas & Scown, Corinne D. & Pett-Ridge, Jennifer & Sagues, William Joe, 2025. "A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    7. Grzegorz Borówka & Grzegorz Semerjak & Wojciech Krasodomski & Jan Lubowicz, 2023. "Purified Glycerine from Biodiesel Production as Biomass or Waste-Based Green Raw Material for the Production of Biochemicals," Energies, MDPI, vol. 16(13), pages 1-12, June.
    8. Balan Emilia Mary, 2022. "Where Is Romania In The European Union’S Bioeconomic Context? The Cluster Analyses Approach," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 172-184, February.
    9. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    10. Uchechukwu Stella Ezealigo & Blessing Nonye Ezealigo & Francis Kemausuor & Luke Ekem Kweku Achenie & Azikiwe Peter Onwualu, 2021. "Biomass Valorization to Bioenergy: Assessment of Biomass Residues’ Availability and Bioenergy Potential in Nigeria," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    11. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    12. Vikram Mittal & Logan Dosan, 2025. "System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies," Sustainability, MDPI, vol. 17(15), pages 1-21, August.
    13. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
    15. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    16. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    17. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    18. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    19. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    20. Tong Deng & Vivek Garg & Michael S. A. Bradley, 2025. "Review of Material-Handling Challenges in Energy Production from Biomass and Other Solid Waste Materials," Energies, MDPI, vol. 18(15), pages 1-30, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:2:p:43-:d:1661808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.