IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4889-d1177318.html
   My bibliography  Save this article

Purified Glycerine from Biodiesel Production as Biomass or Waste-Based Green Raw Material for the Production of Biochemicals

Author

Listed:
  • Grzegorz Borówka

    (ORLEN Południe S.A., Fabryczna 22, 32-540 Trzebinia, Poland
    Faculty of Energy and Fuels, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Grzegorz Semerjak

    (ORLEN Południe S.A., Fabryczna 22, 32-540 Trzebinia, Poland)

  • Wojciech Krasodomski

    (Oil and Gas Institute—National Research Institute, 25 A Lubicz Str., 31-503 Kraków, Poland)

  • Jan Lubowicz

    (Oil and Gas Institute—National Research Institute, 25 A Lubicz Str., 31-503 Kraków, Poland)

Abstract

Glycerine (glycerol) is a polyol consisting of three carbon atoms bonded to hydroxyl groups. It is a by-product of the transesterification of triglycerides, such as animal fats, vegetable oils, or used cooking oils during the biodiesel production process. Crude glycerine is subject to purification processes resulting in distilled glycerine containing at least 99.5% glycerol. Currently, produced high-quality distilled glycerine is used in the food, pharmaceutical, and cosmetic industries. Recently, technologies for converting glycerol to other chemicals through catalytic processes have been intensively developed, e.g., production of bio-based 1,2-propanediol. In the near future, glycerol will certainly become a promising renewable raw material in many modern biorefineries for the synthesis of biofuels, chemicals, and bioenergy production. This paper presents the possibility of using ion exchange resins to remove impurities with trace amounts of sulphur and nitrogen compounds from crude and distilled glycerine, produced during the biodiesel production process from used cooking oils. It was determined that using ion exchange resins at the preliminary purification stage (before distillation) was ineffective. Using cationite resins to purify distilled glycerine produced from waste materials enables the removal of impurities in the form of sulphur and nitrogen compounds.

Suggested Citation

  • Grzegorz Borówka & Grzegorz Semerjak & Wojciech Krasodomski & Jan Lubowicz, 2023. "Purified Glycerine from Biodiesel Production as Biomass or Waste-Based Green Raw Material for the Production of Biochemicals," Energies, MDPI, vol. 16(13), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4889-:d:1177318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mai-Moulin, T. & Hoefnagels, R. & Grundmann, P. & Junginger, M., 2021. "Effective sustainability criteria for bioenergy: Towards the implementation of the european renewable directive II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Nicolás M. Clauser & Giselle González & Carolina M. Mendieta & Julia Kruyeniski & María C. Area & María E. Vallejos, 2021. "Biomass Waste as Sustainable Raw Material for Energy and Fuels," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    3. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    3. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    4. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability,, Springer.
    5. Gretchen Vengerova & Isaac Lipsky & Gwyneth A. Hutchinson & Nils J. H. Averesch & Aaron J. Berliner, 2024. "Space bioprocess engineering as a potential catalyst for sustainability," Nature Sustainability, Nature, vol. 7(3), pages 238-246, March.
    6. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Stubenrauch, Jessica & Garske, Beatrice, 2023. "Forest protection in the EU's renewable energy directive and nature conservation legislation in light of the climate and biodiversity crisis – Identifying legal shortcomings and solutions," Forest Policy and Economics, Elsevier, vol. 153(C).
    8. Balan Emilia Mary, 2022. "Where Is Romania In The European Union’S Bioeconomic Context? The Cluster Analyses Approach," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 172-184, February.
    9. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
    10. Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
    11. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    12. Uchechukwu Stella Ezealigo & Blessing Nonye Ezealigo & Francis Kemausuor & Luke Ekem Kweku Achenie & Azikiwe Peter Onwualu, 2021. "Biomass Valorization to Bioenergy: Assessment of Biomass Residues’ Availability and Bioenergy Potential in Nigeria," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    13. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    14. Luigi Pari & Vincenzo Alfano & Walter Stefanoni & Francesco Latterini & Federico Liuzzi & Isabella De Bari & Vito Valerio & Anna Ciancolini, 2021. "Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions," Sustainability, MDPI, vol. 13(7), pages 1-11, April.
    15. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    16. Islam Mohammed Mahbubul & Miah Himan, 2023. "Prospects of Bioethanol from Agricultural Residues in Bangladesh," Energies, MDPI, vol. 16(12), pages 1-21, June.
    17. Zafreen Elahi & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim & Mohd Shahrizal Ab Razak & Anwaar Hazoor Ansari & Mohamed Meftah Ben Zair, 2021. "Waste Cooking Oil as a Sustainable Bio Modifier for Asphalt Modification: A Review," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    18. Elnaz Nasiri & Lisandra Rocha-Meneses & Abrar Inayat & Timo Kikas, 2022. "Impact of Policy Instruments in the Implementation of Renewable Sources of Energy in Selected European Countries," Sustainability, MDPI, vol. 14(10), pages 1-33, May.
    19. Zetterholm, Jonas & Mossberg, Johanna & Jafri, Yawer & Wetterlund, Elisabeth, 2022. "We need stable, long-term policy support! — Evaluating the economic rationale behind the prevalent investor lament for forest-based biofuel production," Applied Energy, Elsevier, vol. 318(C).
    20. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4889-:d:1177318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.