IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp902-911.html
   My bibliography  Save this article

Energy pellets from whole-wheat straw processed with a deep eutectic solvent: A comprehensive thermal, molecular and environmental evaluation

Author

Listed:
  • Guo, Tianyu
  • Yu, Yan
  • Wan, Zhangmin
  • Zargar, Shiva
  • Wu, Jie
  • Bi, Ran
  • Sokhansanj, Shahabaddine
  • Tu, Qingshi
  • Rojas, Orlando J.

Abstract

Storage and transportation are main considerations for seasonal crop residues to become competitive alternatives to non-sustainable fossil fuels and chemicals. Hence, pelletization and briquetting are highly relevant to mass and energy densification and associated supply chains. Here, we propose a green treatment based on recyclable, deep eutectic solvent (DES) to achieve partial swelling and dissolution of residual agricultural biomass (wheat straw), leading to improved structuring and cohesion of energy pellets. The mild DES-based process enhances access to lignin, which migrates and regenerates at interphases for effective binding, enabling improved pellet durability (increased by 90–97% compared to pellets produced from the untreated biomass). The role of lignin was studied by molecular dynamics simulation, which revealed non-bonding interactions with cellulose, impacting the strength of the pellet structure. The DES treatment enhanced the heating value of the pellets (from 16.1 to 19.5 MJ/kg), partially a result of a higher acidy ratio, and simultaneously led to better devolatilization, lignin accessibility and release of volatile matter during pyrolysis. The potential environmental benefit of DES-treated pellets over wood-based counterparts is revealed by a life cycle assessment. Our study further indicates the reduced environmental impact of DES-treated pellets, which can be furthered by recycling of the solvent.

Suggested Citation

  • Guo, Tianyu & Yu, Yan & Wan, Zhangmin & Zargar, Shiva & Wu, Jie & Bi, Ran & Sokhansanj, Shahabaddine & Tu, Qingshi & Rojas, Orlando J., 2022. "Energy pellets from whole-wheat straw processed with a deep eutectic solvent: A comprehensive thermal, molecular and environmental evaluation," Renewable Energy, Elsevier, vol. 194(C), pages 902-911.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:902-911
    DOI: 10.1016/j.renene.2022.05.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200800X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mupondwa, Edmund & Li, Xue & Tabil, Lope & Sokhansanj, Shahab & Adapa, Phani, 2017. "Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 178-190.
    2. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    3. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    4. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
    5. Mupondwa, Edmund & Li, Xue & Tabil, Lope & Sokhansanj, Shahab & Adapa, Phani, 2017. "Status of Canada's lignocellulosic ethanol: Part II: Hydrolysis and fermentation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1535-1555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    3. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Xue & Mupondwa, Edmund, 2021. "Empirical analysis of large-scale bio-succinic acid commercialization from a technoeconomic and innovation value chain perspective: BioAmber biorefinery case study in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Rocha-Meneses, Lisandra & Raud, Merlin & Orupõld, Kaja & Kikas, Timo, 2019. "Potential of bioethanol production waste for methane recovery," Energy, Elsevier, vol. 173(C), pages 133-139.
    6. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    7. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    9. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    10. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    11. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    12. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    13. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    14. Aleksandras Chlebnikovas & Dainius Paliulis & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius, 2021. "Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production," Energies, MDPI, vol. 14(24), pages 1-18, December.
    15. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
    16. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    17. Dawid Szwarc & Anna Nowicka & Katarzyna Głowacka, 2022. "Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency," Energies, MDPI, vol. 15(14), pages 1-10, July.
    18. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    19. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Mhatre, Apurv & Kalscheur, Bethany & Mckeown, Haley & Bhakta, Karan & Sarnaik, Aditya P. & Flores, Andrew & Nielsen, David R. & Wang, Xuan & Soundappan, Thiagarajan & Varman, Arul M., 2022. "Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium," Renewable Energy, Elsevier, vol. 193(C), pages 288-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:902-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.