IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219320900.html
   My bibliography  Save this article

Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus

Author

Listed:
  • Jin, Xianchun
  • Song, Jianing
  • Liu, Gao-Qiang

Abstract

This study concerns the in-house development of enzymes from Aspergillus fumigatus and their application in separate hydrolysis and fermentation (SHF) processes for bioethanol production from pretreated rice straw. The cellulase and hemicellulase activities of A. fumigatus cultivated in NaOH-pretreated rice straw were much higher than those of A. fumigatus cultivated in raw rice straw. A. fumigatus cultivated in raw rice straw exhibited no lignin-degrading manganese peroxidase (MnP) or laccase enzymatic activity. However, A. fumigatus cultivated in NaOH-pretreated rice straw exhibited high lignin-degrading MnP and laccase enzymatic activity. A. fumigatus completely degraded 1.0% NaOH-pretreated rice straw, yielding 27.89 g/L reducing sugar upon loading of 50 g/L rice straw (based on the original amount of rice straw that went to pretreatment). Saccharification of 1.0% NaOH-pretreated rice straw using 200 FPU/mL crude enzyme released 22.15 g/L reducing sugars in 20 h. The SHF processes resulted in an ethanol concentration and yield of 9.45 g/L and 83.5%, respectively, with Saccharomyces tanninophilus.

Suggested Citation

  • Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320900
    DOI: 10.1016/j.energy.2019.116395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molaverdi, Maryam & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment," Energy, Elsevier, vol. 167(C), pages 654-660.
    2. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    3. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    4. Morone, Amruta & Sharma, Ganesh & Sharma, Abhinav & Chakrabarti, Tapan & Pandey, R.A., 2018. "Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility," Renewable Energy, Elsevier, vol. 120(C), pages 88-97.
    5. Zhao, Chen & Zou, Zongsheng & Li, Jisheng & Jia, Honglei & Liesche, Johannes & Chen, Shaolin & Fang, Hao, 2018. "Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production," Renewable Energy, Elsevier, vol. 118(C), pages 14-24.
    6. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    2. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    3. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    4. Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).
    5. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    7. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    2. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    3. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    4. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    5. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    6. Singh, Renu & Srivastava, Monika & Shukla, Ashish, 2016. "Environmental sustainability of bioethanol production from rice straw in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 202-216.
    7. Martin J. Taylor & Hassan A. Alabdrabalameer & Vasiliki Skoulou, 2019. "Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels," Sustainability, MDPI, vol. 11(13), pages 1-27, June.
    8. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    9. Huzir, Nurhamieza Md & Aziz, Md Maniruzzaman A. & Ismail, S.B. & Abdullah, Bawadi & Mahmood, Nik Azmi Nik & Umor, N.A. & Syed Muhammad, Syed Anuar Faua’ad, 2018. "Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 476-485.
    10. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    11. Guo, Tianyu & Yu, Yan & Wan, Zhangmin & Zargar, Shiva & Wu, Jie & Bi, Ran & Sokhansanj, Shahabaddine & Tu, Qingshi & Rojas, Orlando J., 2022. "Energy pellets from whole-wheat straw processed with a deep eutectic solvent: A comprehensive thermal, molecular and environmental evaluation," Renewable Energy, Elsevier, vol. 194(C), pages 902-911.
    12. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    14. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    15. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    16. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    18. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    20. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219320900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.