IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220315991.html
   My bibliography  Save this article

Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia

Author

Listed:
  • Chong, Ting Yen
  • Cheah, Siang Aun
  • Ong, Chin Tye
  • Wong, Lee Yi
  • Goh, Chern Rui
  • Tan, Inn Shi
  • Foo, Henry Chee Yew
  • Lam, Man Kee
  • Lim, Steven

Abstract

Production of third-generation bioethanol from macroalgae cellulosic residue (MCR) has received increasing interest from researchers to utilize waste for valuable product creation effectively. In this study, a techno-economic assessment to produce anhydrous bioethanol from MCR in Malaysia had been conducted by using Aspen Plus V10 and other computer-aided softwares. Kota Kinabalu Industrial Park at Sabah was identified and selected as a proper location to produce the anhydrous bioethanol based on a framework structured by the Triple Bottom Line. The overall results from the present study showed that 15833.3 kg/h of MCR was required to produce 7626 kg/h of anhydrous bioethanol. It was also found that the energy utilization could be reduced up to 32% with net energy ratio of 0.53 after implementing the Heat Exchanges Networks Synthesis and a series of process optimization. In 20 years of plant life, the pay-back period was 8 years with an internal rate of return of 23.17%. The minimum selling price of anhydrous bioethanol was estimated to be $ 0.54/kg and able to compete with the market prices of bioethanol derived from other feedstocks.

Suggested Citation

  • Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315991
    DOI: 10.1016/j.energy.2020.118491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masri, Mahmoud A. & Jurkowski, Wojciech & Shaigani, Pariya & Haack, Martina & Mehlmer, Norbert & Brück, Thomas, 2018. "A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass," Applied Energy, Elsevier, vol. 224(C), pages 1-12.
    2. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    3. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    4. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    5. Tan, Inn Shi & Lee, Keat Teong, 2014. "Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study," Energy, Elsevier, vol. 78(C), pages 53-62.
    6. Dickson, Rofice & Ryu, Jun-Hyung & Liu, J. Jay, 2018. "Optimal plant design for integrated biorefinery producing bioethanol and protein from Saccharina japonica: A superstructure-based approach," Energy, Elsevier, vol. 164(C), pages 1257-1270.
    7. Pham, Huong Thi Thu & Nghiem, Nhuan P. & Kim, Tae Hyun, 2018. "Near theoretical saccharification of sweet sorghum bagasse using simulated green liquor pretreatment and enzymatic hydrolysis," Energy, Elsevier, vol. 157(C), pages 894-903.
    8. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    9. Liu, Lu & Zhang, Zhicai & Wang, Jia & Fan, Yajuan & Shi, Wenjing & Liu, Xiaocui & Shun, Quanshan, 2019. "Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production," Energy, Elsevier, vol. 168(C), pages 946-952.
    10. Zhao, Xihua & Yi, Shi & Li, Hanxin, 2019. "The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production," Renewable Energy, Elsevier, vol. 136(C), pages 1028-1035.
    11. Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
    12. Cardona Alzate, C.A. & Sánchez Toro, O.J., 2006. "Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass," Energy, Elsevier, vol. 31(13), pages 2447-2459.
    13. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    14. Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
    15. Kumar, Santosh & Singh, Neetu & Prasad, Ram, 2010. "Anhydrous ethanol: A renewable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1830-1844, September.
    16. Chen, Huihui & Zhou, Dong & Luo, Gang & Zhang, Shicheng & Chen, Jianmin, 2015. "Macroalgae for biofuels production: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 427-437.
    17. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    18. Hossain, Nazia & Zaini, Juliana & Indra Mahlia, Teuku Meurah, 2019. "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Caffrey, Kevin R. & Veal, Matthew W. & Chinn, Mari S., 2014. "The farm to biorefinery continuum: A techno-economic and LCA analysis of ethanol production from sweet sorghum juice," Agricultural Systems, Elsevier, vol. 130(C), pages 55-66.
    20. William Herbert Lee Stafford & George Adrian Lotter & Graham Paul von Maltitz & Alan Colin Brent, 2019. "Biofuels technology development in Southern Africa," Development Southern Africa, Taylor & Francis Journals, vol. 36(2), pages 155-174, March.
    21. del Río, Pablo G. & Domínguez, Elena & Domínguez, Viana D. & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2019. "Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery," Renewable Energy, Elsevier, vol. 141(C), pages 728-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Millicent Rosette Wan Yi & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee, 2022. "Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues," Energy, Elsevier, vol. 242(C).
    2. Szulczyk, Kenneth R. & Tan, Yeng-May, 2022. "Economic feasibility and sustainability of commercial bioethanol from microalgal biomass: The case of Malaysia," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    2. Herika Mylena Medeiros de Queiroz Andrade & Luiz Pinguelli Rosa & Flavo Elano Soares de Souza & Neilton Fidelis da Silva & Maulori Curié Cabral & Dárlio Inácio Alves Teixeira, 2020. "Seaweed Production Potential in the Brazilian Northeast: A Study on the Eastern Coast of the State of Rio Grande do Norte, RN, Brazil," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    3. Szulczyk, Kenneth R. & Tan, Yeng-May, 2022. "Economic feasibility and sustainability of commercial bioethanol from microalgal biomass: The case of Malaysia," Energy, Elsevier, vol. 253(C).
    4. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    5. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    6. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    7. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    9. Sudhakar, M.P. & Arunkumar, K. & Perumal, K., 2020. "Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae)," Renewable Energy, Elsevier, vol. 153(C), pages 456-471.
    10. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    11. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    13. Wang, Ze & Lin, Weigang & Song, Wenli & Wu, Xuexing, 2012. "Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor," Energy, Elsevier, vol. 43(1), pages 301-305.
    14. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    16. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    17. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    18. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    19. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    20. Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.