IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2144-d1603584.html
   My bibliography  Save this article

Spatial Decision Support for Determining Suitable Emergency Assembly Places Using GIS and MCDM Techniques

Author

Listed:
  • Ridvan Ertugrul Yildirim

    (Department of Geomatics, Faculty of Engineering, Ondokuz Mayis University, Samsun 55139, Türkiye)

  • Aziz Sisman

    (Department of Geomatics, Faculty of Engineering, Ondokuz Mayis University, Samsun 55139, Türkiye)

Abstract

Natural and man-made disasters threaten humans. Effective emergency management is essential to minimize disasters and their harmful effects. Prevention, preparation, response, and recovery are the basic phases of emergency management. Emergency assembly places are very important in emergency management during the preparation phase, as these are the first places to be reached during and after the disaster. This study aims to identify the most suitable locations for emergency assembly points, which play a critical role in sustainable disaster management. The location of emergency assembly points is influenced by many criteria. In this study, suitable locations for emergency places were investigated on the basis of criteria. The Best–Worst Method (BWM), a relatively new multi-criteria decision-making (MCDM) method that requires fewer pairwise comparisons and yet provides consistent results, is used to calculate the weights of the criteria after comparing results with the Analytical Hierarchy Process (AHP). The weighted criteria were then used to perform spatial analyses using Geographic Information Systems (GIS). In this study, a two-phase approach was used to determine suitable locations for assembly points: In the first phase, suitable areas were identified by applying raster-based analyses, and in the second phase, vector-based analyses were performed. The results of the two phases were evaluated together, and suitable locations for disaster assembly places were determined. In Atakum District, which is the study area, 41 emergency assembly places were identified, and suitable assembly places were ranked by the Preference Ranking Technique with Similarity to Ideal Solution (TOPSIS) method. Results showed that the first three highest-ranked assembly points (AP) were AP20, AP15, and AP25, while the last three lowest-ranked assembly points were AP2, AP7, and AP6. The identification of these locations will provide crucial decision support for local governments, disaster management authorities, urban planners, etc. in ensuring a more sustainable city.

Suggested Citation

  • Ridvan Ertugrul Yildirim & Aziz Sisman, 2025. "Spatial Decision Support for Determining Suitable Emergency Assembly Places Using GIS and MCDM Techniques," Sustainability, MDPI, vol. 17(5), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2144-:d:1603584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alper Akar & Özlem Akar & Berkant Konakoğlu, 2024. "Analysis of emergency assembly points for post-earthquake disaster management: a case study of Erzincan, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11791-11824, October.
    2. Amin Vafadarnikjoo & Madjid Tavana & Tiago Botelho & Konstantinos Chalvatzis, 2020. "A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria," Annals of Operations Research, Springer, vol. 289(2), pages 391-418, June.
    3. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    4. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    5. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    6. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    7. Aditi Kharb & Sandesh Bhandari & Maria Moitinho de Almeida & Rafael Castro Delgado & Pedro Arcos González & Sandy Tubeuf, 2022. "Valuing Human Impact of Natural Disasters: A Review of Methods," IJERPH, MDPI, vol. 19(18), pages 1-11, September.
    8. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    9. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    10. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    11. Penjani Hopkins Nyimbili & Turan Erden, 2021. "Comparative evaluation of GIS-based best–worst method (BWM) for emergency facility planning: perspectives from two decision-maker groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1031-1067, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    2. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    3. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    4. Alexander Kuan Daiy & Kao-Yi Shen & Jim-Yuh Huang & Tom Meng-Yen Lin, 2021. "A Hybrid MCDM Model for Evaluating Open Banking Business Partners," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    5. Anchal Patil & Vipulesh Shardeo & Ashish Dwivedi & Noor Ulain Rizvi & Sanjoy Kumar Paul, 2024. "A framework to evaluate the temporary hospital locations in wake of COVID-19 pandemic: implications to healthcare operations," Operations Management Research, Springer, vol. 17(2), pages 438-452, June.
    6. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    7. Gholamreza Haseli & Reza Sheikh & Jianqiang Wang & Hana Tomaskova & Erfan Babaee Tirkolaee, 2021. "A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
    8. Kheybari, Siamak & Javdanmehr, Mahsa & Rezaie, Fariba Mahdi & Rezaei, Jafar, 2021. "Corn cultivation location selection for bioethanol production: An application of BWM and extended PROMETHEE II," Energy, Elsevier, vol. 228(C).
    9. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    11. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    12. Khai Wah Khaw & Mark Camilleri & Victor Tiberius & Alhamzah Alnoor & Ali Shakir Zaidan, 2024. "Benchmarking electric power companies’ sustainability and circular economy behaviors: using a hybrid PLS-SEM and MCDM approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6561-6599, March.
    13. Penjani Hopkins Nyimbili & Turan Erden, 2021. "Comparative evaluation of GIS-based best–worst method (BWM) for emergency facility planning: perspectives from two decision-maker groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1031-1067, January.
    14. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    15. Huseyin Kocak & Atalay Caglar & Gulin Zeynep Oztas, 2018. "Euclidean Best–Worst Method and Its Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1587-1605, September.
    16. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2023. "Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system," Applied Energy, Elsevier, vol. 341(C).
    17. Shih-Chia Chang & Ming-Tsang Lu & Mei-Jen Chen & Li-Hua Huang, 2021. "Evaluating the Application of CSR in the High-Tech Industry during the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    18. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    19. Jahangoshai Rezaee, Mustafa & Yousefi, Samuel, 2018. "An intelligent decision making approach for identifying and analyzing airport risks," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 14-27.
    20. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2144-:d:1603584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.