IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1881-d610239.html
   My bibliography  Save this article

A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management

Author

Listed:
  • Gholamreza Haseli

    (School of Industrial Engineering and Management Sciences, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Reza Sheikh

    (School of Industrial Engineering and Management Sciences, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Jianqiang Wang

    (School of Business, Central South University, Changsha 410083, China)

  • Hana Tomaskova

    (Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic)

  • Erfan Babaee Tirkolaee

    (Department of Industrial Engineering, Istinye University, Istanbul 34010, Turkey)

Abstract

Due to the complexity of real-world multi-criteria decision-making (MCDM) issues, analyzing different opinions from a group of decision makers needs to ensure appropriate decision making. The group decision-making methods collect preferences of the decision makers and present the best preferences using mathematical equations. The best–worst method (BWM) is one of the recently introduced MCDM methods that requires fewer pairwise comparisons to obtain the criteria weights than the other MCDM methods. In this research, we develop a novel approach to group decision-making problems based on the BWM called G-BWM. This approach helps us to analyze the preferences of decision makers to carry out democratic decision making using the BWM structure. In order to assess the applicability of the proposed methodology and represent its novelty, two numerical examples from the literature with the application to supply chain management (SCM) (i.e., green supplier selection and supplier development/segmentation) are examined and discussed. The results demonstrate the performance of our proposed G-BWM for group decision making in terms of a large number of decision makers, ease of use and achieving democratic decisions in the decision-making process.

Suggested Citation

  • Gholamreza Haseli & Reza Sheikh & Jianqiang Wang & Hana Tomaskova & Erfan Babaee Tirkolaee, 2021. "A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1881-:d:610239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: Means," Post-Print hal-00539028, HAL.
    2. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    3. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Zainab Khalifah & Khalil MD Nor, 2015. "Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: a systematic review of the literature," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(5), pages 1034-1068, October.
    4. Negin Salimi & Jafar Rezaei, 2016. "Measuring efficiency of university-industry Ph.D. projects using best worst method," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1911-1938, December.
    5. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    6. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    7. Stan Lipovetsky, 2020. "Express analysis for prioritization: Best–Worst Scaling alteration to System 1," Journal of Management Analytics, Taylor & Francis Journals, vol. 7(1), pages 12-27, January.
    8. Kim, Soung Hie & Ahn, Byeong Seok, 1999. "Interactive group decision making procedure under incomplete information," European Journal of Operational Research, Elsevier, vol. 116(3), pages 498-507, August.
    9. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.
    10. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive benefit evaluation of eco-industrial parks by employing the best-worst method based on circular economy and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1229-1253, June.
    11. Badri Ahmadi, Hadi & Kusi-Sarpong, Simonov & Rezaei, Jafar, 2017. "Assessing the social sustainability of supply chains using Best Worst Method," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 99-106.
    12. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    13. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    14. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Noruzi & Ali Naderan & Jabbar Ali Zakeri & Kamran Rahimov, 2023. "A Novel Decision-Making Framework to Evaluate Rail Transport Development Projects Considering Sustainability under Uncertainty," Sustainability, MDPI, vol. 15(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    2. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    3. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Nan Li & Haining Zhang & Xiangcheng Zhang & Xue Ma & Sen Guo, 2020. "How to Select the Optimal Electrochemical Energy Storage Planning Program? A Hybrid MCDM Method," Energies, MDPI, vol. 13(4), pages 1-20, February.
    5. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    6. Kheybari, Siamak & Javdanmehr, Mahsa & Rezaie, Fariba Mahdi & Rezaei, Jafar, 2021. "Corn cultivation location selection for bioethanol production: An application of BWM and extended PROMETHEE II," Energy, Elsevier, vol. 228(C).
    7. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    8. Chakraborty, Santonab & Ghosh, Sayantan & Sarker, Baneswar & Chakraborty, Shankar, 2020. "An integrated performance evaluation approach for the Indian international airports," Journal of Air Transport Management, Elsevier, vol. 88(C).
    9. Minaei, Foad & Minaei, Masoud & Kougias, Ioannis & Shafizadeh-Moghadam, Hossein & Hosseini, Seyed Ali, 2021. "Rural electrification in protected areas: A spatial assessment of solar photovoltaic suitability using the fuzzy best worst method," Renewable Energy, Elsevier, vol. 176(C), pages 334-345.
    10. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    11. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    12. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    13. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    14. Javid Nafari & Alireza Arab & Sina Ghaffari, 2017. "Through the Looking Glass: Analysis of Factors Influencing Iranian Student’s Study Abroad Motivations and Destination Choice," SAGE Open, , vol. 7(2), pages 21582440177, June.
    15. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    16. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    17. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    18. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    19. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    20. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1881-:d:610239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.