IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1587-d589470.html
   My bibliography  Save this article

BW-MaxEnt: A Novel MCDM Method for Limited Knowledge

Author

Listed:
  • Xiao-Kang Wang

    (School of Business, Central South University, Changsha 410083, China)

  • Wen-Hui Hou

    (School of Business, Central South University, Changsha 410083, China)

  • Chao Song

    (School of Business, Central South University, Changsha 410083, China)

  • Min-Hui Deng

    (School of Business, Central South University, Changsha 410083, China
    School of Business, Guilin University of Technology, Guilin 541004, China)

  • Yong-Yi Li

    (School of Business, Guilin University of Technology, Guilin 541004, China)

  • Jian-Qiang Wang

    (School of Business, Central South University, Changsha 410083, China)

Abstract

With the development of the social economy and an enlarged volume of information, the application of multiple-criteria decision making (MCDM) has become increasingly wide and deep. As a brilliant MCDM technique, the best–worst method (BWM) has attracted many scholars’ attention because it can determine the weights of criteria with less comparison time and higher consistency between judgments than analytic hierarchy process. However, the effectiveness of the BWM is based on complete comparison information among criteria. Considering the fact that the decision makers may have limited time and energy to study all criteria, they cannot construct a complete comparison system. In this paper, we propose a novel MCDM method named BW-MaxEnt that combines BWM and the maximum entropy method (MaxEnt) to identify the weights of unfamiliar criteria with incomplete decision information. The model can be translated into a convex optimization problem that can be solved effectively and has an overall optimal solution. Finally, a practical application concerning the procurement of GPU workstations illustrates the feasibility of the proposed BW-MaxEnt method.

Suggested Citation

  • Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1587-:d:589470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leoneti, Alexandre Bevilacqua & Gomes, Luiz Flavio Autran Monteiro, 2021. "A novel version of the TODIM method based on the exponential model of prospect theory: The ExpTODIM method," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1042-1055.
    2. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    3. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    4. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    5. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    6. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    7. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    8. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    9. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    10. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    11. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    12. Badri Ahmadi, Hadi & Kusi-Sarpong, Simonov & Rezaei, Jafar, 2017. "Assessing the social sustainability of supply chains using Best Worst Method," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 99-106.
    13. Xiao-kang Wang & Sheng-hui Wang & Hong-yu Zhang & Jian-qiang Wang & Lin Li, 2021. "The Recommendation Method for Hotel Selection Under Traveller Preference Characteristics: A Cloud-Based Multi-Criteria Group Decision Support Model," Group Decision and Negotiation, Springer, vol. 30(6), pages 1433-1469, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholamreza Haseli & Reza Sheikh & Jianqiang Wang & Hana Tomaskova & Erfan Babaee Tirkolaee, 2021. "A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
    2. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    3. Aziz Naghizadeh Vardin & Ramin Ansari & Mohammad Khalilzadeh & Jurgita Antucheviciene & Romualdas Bausys, 2021. "An Integrated Decision Support Model Based on BWM and Fuzzy-VIKOR Techniques for Contractor Selection in Construction Projects," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    4. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    5. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    7. Kheybari, Siamak & Javdanmehr, Mahsa & Rezaie, Fariba Mahdi & Rezaei, Jafar, 2021. "Corn cultivation location selection for bioethanol production: An application of BWM and extended PROMETHEE II," Energy, Elsevier, vol. 228(C).
    8. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    10. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    11. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    12. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    13. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    14. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Willem Brauers, 2013. "Multi-objective seaport planning by MOORA decision making," Annals of Operations Research, Springer, vol. 206(1), pages 39-58, July.
    16. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    17. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    18. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    19. Wu, Qun & Liu, Xinwang & Zhou, Ligang & Qin, Jindong & Rezaei, Jafar, 2024. "An analytical framework for the best–worst method," Omega, Elsevier, vol. 123(C).
    20. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1587-:d:589470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.