IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp1-12.html
   My bibliography  Save this article

A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass

Author

Listed:
  • Masri, Mahmoud A.
  • Jurkowski, Wojciech
  • Shaigani, Pariya
  • Haack, Martina
  • Mehlmer, Norbert
  • Brück, Thomas

Abstract

Biofuels and the oleochemical industry are highly dependent on plant oils for the generation of renewable product lines. Consequently, production of plant lipids, such as palm and rapeseed oil, for industrial applications competes with agricultural activity and is associated with a negative environmental impact. Additionally, established chemical routes for upgrading bio-lipids to renewable products depend on metal-containing catalysts. Metal leaching during oil processing results in heavy metal contaminated process wastewater. This water is difficult to remediate and leads to the loss of precious metals. Therefore, the biofuels and chemical industry requires sustainable solutions for production and upgrading of bio-lipids. With regard to the former, a promising approach is the fermentative conversion of abundant, low-value biomass into microbial, particularly yeast-based lipids. This study describes the holistic, value-adding conversion of underexploited, macroalgae feedstocks into yeast oil, animal feed and biosorbents for metal-based detoxification of process wastewater. The initial step comprises a selective enzymatic liquefaction step that yields a supernatant containing 62.5% and 59.3% (w/dwbiomass) fermentable sugars from L. digitata and U. lactuca, respectively. By dispensing with chemical pretreatment constraints, we achieved a 95% (w/w) glucose recovery. Therefore, the supernatant was qualified as a cultivation media without any detoxification step or nutrition addition. Additionally, the hydrolysis step provided 27–33% (w/dwbiomass) of a solid residue, which was qualified as a metal biosorbent. Cultivation of the oleaginous yeast C. oleaginosus on the unprocessed hydrolysis supernatant provided 44.8 g L−1 yeast biomass containing 37.1% (w/dwbiomass) lipids. The remaining yeast biomass after lipid extraction is targeted as a performance animal feed additive. Selectivity and capacity of solid macroalgae residues as biosorbents were assessed for removal and recycling of rare and heavy metals, such as Ce+3, Pb+2, Cu+2 and Ni+2 from model wastewater. The biosorption capacity of the macroalgae residues (sorption capacity ∼ 0.7 mmol g−1) exceeds that of relevant commercially available adsorption resins and biosorbents. To facilitate the integration of our technology in existing chemical and biotechnological production environments, we have devised simple, rapid and cost-efficient methods for monitoring both lipogenesis and metal sorption processes. The application of the new optical monitoring tools is essential to determine yeast cell harvesting times and biosorption capacities respectively. For the first time we report on a waste-free bioprocess that combines sustainable, microbial lipid production from low value marine biomass with in-process precious metal recycling options. Our data allowed for a preliminary economic analysis, which indicated that each product could be cost competitive with current market equivalents. Hence, the synaptic nature of the technology platform provides for the economic and ecologic viability of the overall process chain.

Suggested Citation

  • Masri, Mahmoud A. & Jurkowski, Wojciech & Shaigani, Pariya & Haack, Martina & Mehlmer, Norbert & Brück, Thomas, 2018. "A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass," Applied Energy, Elsevier, vol. 224(C), pages 1-12.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:1-12
    DOI: 10.1016/j.apenergy.2018.04.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mekhilef, S. & Siga, S. & Saidur, R., 2011. "A review on palm oil biodiesel as a source of renewable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1937-1949, May.
    2. Liang, Yanna & Tang, Tianyu & Siddaramu, Thara & Choudhary, Ruplal & Umagiliyage, Arosha Loku, 2012. "Lipid production from sweet sorghum bagasse through yeast fermentation," Renewable Energy, Elsevier, vol. 40(1), pages 130-136.
    3. Subhadra, Bobban & Edwards, Mark, 2010. "An integrated renewable energy park approach for algal biofuel production in United States," Energy Policy, Elsevier, vol. 38(9), pages 4897-4902, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    2. Feng, Weiliang & Xiong, Huan & Wang, Weiguo & Duan, Xiaoling & Yang, Tong & Wu, Cheng & Yang, Fang & Xiong, Jing & Wang, Teilin & Wang, Cunwen, 2019. "Energy consumption analysis of lipid extraction from black soldier fly biomass," Energy, Elsevier, vol. 185(C), pages 1076-1085.
    3. Arun, J. & Raghu, R. & Suhail Madhar Hanif, S. & Thilak, P.G. & Sridhar, D. & Nirmala, N. & Dawn, S.S. & Sivaramakrishnan, R. & Chi, Nguyen Thuy Lan & Pugazhendhi, Arivalagan, 2022. "A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps," Applied Energy, Elsevier, vol. 325(C).
    4. Feng, Weiliang & Xiong, Huan & Wang, Weiguo & Duan, Xiaoling & Yang, Tong & Wu, Cheng & Yang, Fang & Wang, Teilin & Wang, Cunwen, 2020. "A facile and mild one-pot process for direct extraction of lipids from wet energy insects of black soldier fly larvae," Renewable Energy, Elsevier, vol. 147(P1), pages 584-593.
    5. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    2. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    3. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    4. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    5. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    7. Tereza Svatoňová & David Herák & Abraham Kabutey, 2015. "Financial Profitability and Sensitivity Analysis of Palm Oil Plantation in Indonesia," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(4), pages 1365-1373.
    8. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    9. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    10. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    11. Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    12. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    13. Nongbe, Medy C. & Ekou, Tchirioua & Ekou, Lynda & Yao, Kouassi Benjamin & Le Grognec, Erwan & Felpin, François-Xavier, 2017. "Biodiesel production from palm oil using sulfonated graphene catalyst," Renewable Energy, Elsevier, vol. 106(C), pages 135-141.
    14. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    15. César, Aldara da Silva & Batalha, Mário Otávio & Zopelari, André Luiz Miranda Silva, 2013. "Oil palm biodiesel: Brazil's main challenges," Energy, Elsevier, vol. 60(C), pages 485-491.
    16. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    17. Norhana Abdul Majid & Zaimah Ramli & Sarmila Md Sum & Abd Hair Awang, 2021. "Sustainable Palm Oil Certification Scheme Frameworks and Impacts: A Systematic Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    18. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    20. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.