IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032175.html
   My bibliography  Save this article

Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues

Author

Listed:
  • Chung, Millicent Rosette Wan Yi
  • Tan, Inn Shi
  • Foo, Henry Chee Yew
  • Lam, Man Kee

Abstract

This paper evaluates the thermodynamic performance of three different l-lactic acid (LLA) biorefinery scenarios, utilizing macroalgae cellulosic residue, namely Eucheuma denticulatum residues (EDRs), as raw materials. To establish exergy analysis, the thermodynamic properties of each biorefinery scenario was obtained through process simulation using Aspen Plus® V10. It was found that microwave-assisted autohydrolysis (MAA) was feasible in minimizing the amount of EDRs needed by 70.2% to produce 1000 kg/h of LLA. The fermentation unit, wastewater treatment (WWT) unit, and combined heat and power (CHP) unit were ranked top three for the occurrence of exergy destruction. Both the LLA recovery unit (99.37%) and MAA pretreatment unit (99.68%) were found to be highly exergetically efficient. Among the three scenarios, Scenario III, which was integrated with power generation and a proper waste management system, had the highest functional exergy efficiency (22.12%) and normalized exergy destruction (0.73). It demonstrated the highest functionality due to the prevention of material losses by converting waste streams into value-added products and reducing reliance on fossil-fuel derived energy for plant operation. The valuable information from exergy analysis provides theoretical guidance for performance enhancement in a macroalgae-based biorefinery to produce LLA, either with process integration or technology advancement.

Suggested Citation

  • Chung, Millicent Rosette Wan Yi & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee, 2022. "Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032175
    DOI: 10.1016/j.energy.2021.122968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Fang & Chen, Guanyi & Yan, Beibei & Ma, Wenchao & Cheng, Zhanjun & Hou, Li'an, 2017. "Exergy analysis of a new lignocellulosic biomass-based polygeneration system," Energy, Elsevier, vol. 140(P1), pages 1087-1095.
    2. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    3. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    4. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    5. Dogbe, Eunice Sefakor & Mandegari, Mohsen A. & Görgens, Johann F., 2018. "Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process," Energy, Elsevier, vol. 145(C), pages 614-625.
    6. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    7. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    8. I. Dincer & T.A.H. Ratlamwala, 2013. "Importance of exergy for analysis, improvement, design, and assessment," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(3), pages 335-349, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    5. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    6. Mkwananzi, Thobeka & Mandegari, Mohsen & Görgens, Johann F., 2019. "Disturbance modelling through steady-state value deviations: The determination of suitable energy indicators and parameters for energy consumption monitoring in a typical sugar mill," Energy, Elsevier, vol. 176(C), pages 211-223.
    7. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    8. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    9. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    11. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    12. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    13. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    14. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    15. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    16. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    17. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    18. Felipe Godoy Righetto & Carlos Eduardo Keutenedjian Mady, 2023. "Exergy Analysis of a Sugarcane Crop: A Planting-to-Harvest Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    19. Feng, Fei & Song, Guohui & Shen, Laihong & Xiao, Jun, 2017. "Environmental benefits analysis based on life cycle assessment of rice straw-based synthetic natural gas in China," Energy, Elsevier, vol. 139(C), pages 341-349.
    20. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.