IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002603.html
   My bibliography  Save this article

Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting

Author

Listed:
  • Tao, Ming
  • Yang, Zheng
  • Zhao, Yan
  • Wu, Xingyu
  • Wu, Chengqing

Abstract

Microwave-assisted rock fragmentation is a clean, safe, and economically viable method in deep energy development. The innovation of this study lies in the first investigation of rock breaking under initial stress using microwave-assisted tunnel boring machines (TBM) cutters. To overcome the problem of inaccurate monitoring of crack information in laboratory tests, a new concept was adopted to simulate the failure process of microwave-irradiated sandstone caused by a TBM cutter. The microscopic parameters of the model were calibrated based on the laboratory test results. The results showed that an increase in the microwave power led to an increase in the damage level of the sandstone. The dominant failure modes at a low initial stress were vertical and diagonal cracks. At a high initial stress, the failure modes were a combination of vertical, diagonal, and subhorizontal cracks. The critical range of the initial stress to inhibit crack expansion was 10–20 MPa. The rock-breaking efficiency was negatively correlated with initial stress and positively correlated with microwave power. The assisted rock-breaking effect of microwave power was evident at 30 MPa. These results serve as a guide for selecting the appropriate microwave power for rock-breaking under initial stresses.

Suggested Citation

  • Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002603
    DOI: 10.1016/j.energy.2024.130489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.