IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002713.html
   My bibliography  Save this article

Modeling of non-contact rock breaking process and analysis of rock destruction mechanisms for basalt under microwave treatment

Author

Listed:
  • Gao, Ming
  • Kuang, Yuanyuan
  • Zhang, Liyuan
  • Liu, Sheng
  • Wang, Xiaojie

Abstract

The utilization of microwave technology for rock fragmentation is increasingly common in mining and geotechnical engineering. The Microwave-Direct Rock Destruction (MDRD) method applies microwave energy directly to melt rock strata, creating cavities that mitigate economic losses associated with tool wear. To elucidate the MDRD process and its heating dynamics, a comprehensive multi-physics fields model was developed, integrating the transmission of the microwave field, non-isothermal flow, and phase changes. Specifically, in the MDRD of basalt, the rock's microwave energy absorption is primarily influenced by changes in the electrical properties of materials during phase transitions. This absorption significantly shapes the temperature distribution within the rock, characterized by a gradual increase, followed by a rapid rise and eventual stabilization. Moreover, the growth and expansion of a molten core during the microwave heating process critically affect the depth of the resultant melting cavity. The developed model and its findings enhance the understanding of the MDRD process and offer valuable guidance for employing microwave technology in non-contact rock fragmentation methods.

Suggested Citation

  • Gao, Ming & Kuang, Yuanyuan & Zhang, Liyuan & Liu, Sheng & Wang, Xiaojie, 2025. "Modeling of non-contact rock breaking process and analysis of rock destruction mechanisms for basalt under microwave treatment," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002713
    DOI: 10.1016/j.energy.2025.134629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    2. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    3. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zhongjun & Zheng, Yanlong & Li, Jianchun & Zhao, Xiaobao & Zhao, Jian, 2024. "Enhancing rock breakage efficiency by microwave fracturing: A study on antenna selection," Energy, Elsevier, vol. 288(C).
    2. Zhou, Yu & Lv, Wenjun & Zhang, Cheng & Zhou, Zihan & Wang, Hongyu & Liang, Qinyuan & Tang, Qiongqiong & Han, Guansheng & Guo, Wei & Zhao, Dajun, 2024. "Novel hard rock breaking technique using ultra-high-frequency particle impact induced by ultrasonic vibration field," Energy, Elsevier, vol. 288(C).
    3. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    4. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    5. Fan, Shen & Wang, Hanxiang & Zhang, Xin & Liu, Yanxin & Lan, Wenjian & Ma, Wenlong & Sun, Bingyu & Yang, Ning & Ge, Jiawang, 2024. "Study on microwave heating energy supplement technology for gas hydrate reservoir," Energy, Elsevier, vol. 286(C).
    6. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    7. Huang, Feifan & Liu, Chao & Cheng, Siqin & Li, Tao, 2024. "Microwave thermal regeneration characteristics of spent activated carbon based on a coupled electromagnetic, heat and mass transfer multiphase porous media model," Energy, Elsevier, vol. 292(C).
    8. Yang, Zairong & Wang, Chaolin & Zhao, Yu & Bi, Jing, 2024. "Microwave fracturing of frozen coal with different water content: Pore-structure evolution and temperature characteristics," Energy, Elsevier, vol. 294(C).
    9. Wang, Hao & Wang, Liang & Zheng, Siwen & Sun, Yiwei & Shen, Shangkun & Zhang, Xiaolei, 2024. "Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation," Energy, Elsevier, vol. 287(C).
    10. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.