IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006022.html
   My bibliography  Save this article

Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw

Author

Listed:
  • Jin, Xianchun
  • Ma, Jiangshan
  • Song, Jianing
  • Liu, Gao-Qiang

Abstract

A study on the fed-batch semi-simultaneous saccharification and fermentation (FB-S-SSF) of sodium carbonate-pretreated rice straw at biomass loads between 10.0 and 30.0% (m/v) was conducted. Three different feeding modes, i.e., enzyme feeding (E feeding), substrate feeding (SR feeding) and the combination of both E feeding and SR feeding as well as batch mode were conducted for comparison under identical biomass loads. High ethanol concentrations above 90 g/L were obtained in all modes at a biomass load ≥25.0%. The SR feeding modes achieved higher final ethanol concentrations than those of the E feeding mode and batch mode. At biomass loads of 25.0%, 116.8 ± 3.3 and 118.9 ± 3.6 g/L ethanol was obtained for the SR feeding mode and the combination of E feeding and SR feeding modes, respectively. For batch mode and E feeding mode, the ethanol concentrations were 112.3 ± 3.6 and 108.6 ± 3.0 g/L, respectively. The present study shows that the production cost of bioethanol from lignocellulose can be reduced by adopting in situ-produced crude enzymes produced by Aspergillus fumigatus combined with FB-S-SSF of sodium carbonate-pretreated rice straw at a high biomass load, which provides a new idea for effectively reducing the production cost of bioethanol from lignocellulose.

Suggested Citation

  • Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006022
    DOI: 10.1016/j.energy.2021.120353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molaverdi, Maryam & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment," Energy, Elsevier, vol. 167(C), pages 654-660.
    2. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    3. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    4. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    2. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    3. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    4. Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).
    5. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    6. Pedro F Souza Filho & Akram Zamani & Jorge A Ferreira, 2020. "Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes," Energies, MDPI, vol. 13(6), pages 1-14, March.
    7. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    9. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    10. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    11. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    12. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    13. Yujung Jung & Sanghun Lee, 2024. "Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling," Energies, MDPI, vol. 17(7), pages 1-13, March.
    14. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    15. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    16. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    17. Liu, Yunyun & Xu, Jingliang & Zhang, Yu & Yuan, Zhenhong & He, Minchao & Liang, Cuiyi & Zhuang, Xinshu & Xie, Jun, 2015. "Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF," Energy, Elsevier, vol. 90(P1), pages 1199-1205.
    18. Couras, C.S. & Louros, V.L. & Grilo, A.M. & Leitão, J.H. & Capela, M.I. & Arroja, L.M. & Nadais, M.H., 2014. "Effects of operational shocks on key microbial populations for biogas production in UASB (Upflow Anaerobic Sludge Blanket) reactors," Energy, Elsevier, vol. 73(C), pages 866-874.
    19. Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.
    20. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.